خيارات البحث
النتائج 351 - 360 من 4,043
Influences of water properties on the aggregation and deposition of engineered titanium dioxide nanoparticles in natural waters النص الكامل
2016
Li, Ling | Sillanpää, Markus | Risto, Maarit
With the increasing usage of titanium dioxide nanoparticles (NPs), their release into the environment makes it important to understand their transport, fate and behaviour in natural waters. In this study, aggregation and deposition of TiO2 NPs were studied during a 3-h period by using a dynamic light scattering instrument and a UV–vis spectrophotometer, respectively. TiO2 NPs were spiked in 34 lake and 5 brackish water samples at an initial concentration of 10 mg L−1. Depending on the physicochemical properties of the natural waters, TiO2 NPs exhibited different colloidal stability. In brackish waters with high salinity, TiO2 NPs were prone to aggregate and settled rapidly. Whereas under conditions of humic and humus-poor lake waters, TiO2 NPs were suspended in water column for a longer time without remarkable change in particle size and concentration. Deposition likely occurred in nutrient-rich lakes which had high amount of nitrogen and phosphorus accompanied by high values of conductivity, alkalinity, pH and turbidity. Linear regression analysis revealed the statistically significant relationships (p ≤ 0.008) between the TiO2 NPs stability and these water properties. Our study makes a better understanding of the water properties that control the aggregation and deposition of TiO2 NPs in complex natural waters.
اظهر المزيد [+] اقل [-]Impacts of air pollution on cultural heritage corrosion at European level: What has been achieved and what are the future scenarios النص الكامل
2016
Di Turo, Francesca | Proietti, Chiara | Screpanti, Augusto | Fornasier, M Francesca | Cionni, Irene | Favero, Gabriele | De Marco, Alessandra
The interaction of pollutants with Cultural Heritage materials leads to artworks and materials degradation and loss, causing an unpriceless damage. This works aims to estimate the impacts of air pollution and meteorological conditions on limestone, copper and bronze and represents the European risk assessment for corrosion of Cultural Heritage materials. The measures and policies for atmospheric pollution reduction have cut off the SO2 concentration and consequently its impact on materials is drastically reduced. Indeed, in 1980 the number of UNESCO sites in danger was extremely high (94% for limestone, 54% for copper and 1% for bronze) while in 2010 these sites did not exceed the tolerable value of surface recession and corrosion. However, some problem related to air pollution persists. In particular, Random Forest Analysis (RFA), highlights PM10 as the main responsible for materials corrosion, in 2010. Two scenarios in 2030 have been tested, highlighting that the corrosion levels of limestone, copper and bronze exceed the tolerable limits only in the Balkan area and Turkey. Our results show the importance in the air quality modelling as a powerful tool for the UNESCO sites conservation.
اظهر المزيد [+] اقل [-]Quantum-mechanical parameters for the risk assessment of multi-walled carbon-nanotubes: A study using adsorption of probe compounds and its application to biomolecules النص الكامل
2016
Chayawan, | Vikas,
This work forwards new insights into the risk-assessment of multi-walled carbon-nanotubes (MWCNTs) while analysing the role of quantum-mechanical interactions between the electrons in the adsorption of probe compounds and biomolecules by MWCNTs. For this, the quantitative models are developed using quantum-chemical descriptors and their electron-correlation contribution. The major quantum-chemical factors contributing to the adsorption are found to be mean polarizability, electron-correlation energy, and electron-correlation contribution to the absolute electronegativity and LUMO energy. The proposed models, based on only three quantum-chemical factors, are found to be even more robust and predictive than the previously known five or four factors based linear free-energy and solvation-energy relationships. The proposed models are employed to predict the adsorption of biomolecules including steroid hormones and DNA bases. The steroid hormones are predicted to be strongly adsorbed by the MWCNTs, with the order: hydrocortisone > aldosterone > progesterone > ethinyl-oestradiol > testosterone > oestradiol, whereas the DNA bases are found to be relatively less adsorbed but follow the order as: guanine > adenine > thymine > cytosine > uracil. Besides these, the developed electron-correlation based models predict several insecticides, pesticides, herbicides, fungicides, plasticizers and antimicrobial agents in cosmetics, to be strongly adsorbed by the carbon-nanotubes. The present study proposes that the instantaneous inter-electronic interactions may be quite significant in various physico-chemical processes involving MWCNTs, and can be used as a reliable predictor for their risk assessment.
اظهر المزيد [+] اقل [-]Bisphenol A alters gut microbiome: Comparative metagenomics analysis النص الكامل
2016
Lai, Keng-Po | Chung, Yan-Tung | Li, Rong | Wan, Hin-Ting | Wong, Chris Kong-Chu
Mounting evidence has shown that an alteration of the gut microbiota is associated with diet, and plays an important role in animal health and metabolic diseases. However, little is known about the influence of environmental contaminants on the gut microbial community. Bisphenol A (BPA), which is widely used for manufacturing plastic products, has recently been classified as an environmental obesogen. Although many studies have demonstrated the metabolic-disrupting effects of BPA on liver and pancreatic functions, the possible effects of this synthetic compound on the metabolic diversity of the intestinal microbiota is unknown. Using 16S rRNA gene sequencing analysis on caecum samples of CD-1 mice, the present study aimed to test the hypothesis that dietary BPA intake may influence the gut microbiota composition and functions, an important attributing factor to development of the metabolic syndrome. A high-fat diet (HFD) and high-sucrose diet (HSD) were included as the positive controls for comparing the changes in the intestinal microbial profiles. Our results demonstrated a significant reduction of species diversity in the gut microbiota of BPA-fed mice. Alpha and beta diversity analyses showed that dietary BPA intake led to a similar gut microbial community structure as that induced by HFD and HSD in mice. In addition, comparative analysis of the microbial communities revealed that both BPA and a HFD favored the growth of Proteobacteria, a microbial marker of dysbiosis. Consistently, growth induction of the family Helicobacteraceae and reduction of the Firmicutes and Clostridia populations were observed in the mice fed BPA or a HFD. Collectively, our study highlighted that the effects of dietary BPA intake on the shift of microbial community structure were similar to those of a HFD and HSD, and revealed microbial markers for the development of diseases associated with an unstable microbiota.
اظهر المزيد [+] اقل [-]Plastics and microplastics on recreational beaches in Punta del Este (Uruguay): Unseen critical residents? النص الكامل
2016
Lozoya, J.P. | Teixeira de Mello, F. | Carrizo, D. | Weinstein, F. | Olivera, Y. | Cedrés, F. | Pereira, M. | Fossati, M.
Beaches are social-ecological systems that provide several services improving human well-being. However, as one of the major coastal interfaces they are subject to plastic pollution, one of the most significant global environmental threats at present. For the first time for Uruguayan beaches, this study assessed and quantified the accumulation of plastic and microplastic debris on sandy beaches of the major touristic destination Punta del Este during the austral spring of 2013. Aiming to provide valuable information for decision-making, we performed a detailed analysis of plastic debris, their eventual transport pathways to the coast (from land and sea), and the associated persistent pollutants. The results indicated that the smallest size fractions (<20 mm) were the dominant size range, with fragments and resin pellets as types with the highest number of items. PAHs and PCBs were found in plastic debris, and their levels did not differ from baseline values reported for similar locations. The abundance of plastic debris was significantly and positively correlated with both the presence of possible land-based sources (e.g. storm-water drains, beach bars, beach access, car parking, and roads), and dissipative beach conditions. The analysis of coastal currents suggested some potential deposition areas along Punta del Este, and particularly for resin pellets, although modeling was not conclusive. From a local management point of view, the development and use of indices that allow predicting trends in the accumulation of plastic debris would be critically useful. The time dimension (e.g. seasonal) should also be considered for this threat, being crucial for locations such as Uruguay, where the use of beaches increases significantly during the summer. This first diagnosis aims to generate scientific baseline, necessary for improved management of plastic litter on beaches and their watersheds.
اظهر المزيد [+] اقل [-]An evaluation of the toxicity and bioaccumulation of bismuth in the coastal environment using three species of macroalga النص الكامل
2016
Kearns, James | Turner, Andrew
Bismuth is a heavy metal whose biogeochemical behaviour in the marine environment is poorly defined. In this study, we exposed three different species of macroalga (the chlorophyte, Ulva lactuca, the phaeophyte, Fucus vesiculosus, and the rhodophyte, Chondrus crispus) to different concentrations of Bi (up to 50 μg L⁻¹) under controlled, laboratory conditions. After a period of 48-h, the phytotoxicity of Bi was measured in terms of chlorophyll fluorescence quenching, and adsorption and internalisation of Bi determined by ICP after EDTA extraction and acid digestion, respectively. For all algae, both the internalisation and total accumulation of Bi were proportional to the concentration of aqueous metal. Total accumulation followed the order: F. vesiculosus > C. crispus > U. lactuca; with respective accumulation factors of about 4200, 1700 and 600 L kg⁻¹. Greatest internalisation (about 33% of total accumulated Bi) was exhibited by C. crispus, the only macroalga to display a phytotoxic response in the exposures. A comparison of the present results with those reported in the literature suggests that Bi accumulation by macroalgae is significantly lower than its accumulation by marine plankton (volume concentration factors of 10⁵ to 10⁷), and that the phytotoxicity of Bi is low relative to other heavy metals like Ag and Tl.
اظهر المزيد [+] اقل [-]Relative contribution of iron reduction to sediments organic matter mineralization in contrasting habitats of a shallow eutrophic freshwater lake النص الكامل
2016
Chen, Mo | Jiang, He-Long
Iron reduction is one of the important organic matter (OM) mineralization pathway in sediments. Here we investigated the rates and the relative contribution of iron reduction to OM mineralization in Zhushan bay (ZSB, cyanobacterial bloom biomass (CBB)-dominated habitats) and East Taihu Lake (ETL, submerged macrophypes (SM)-dominated habitats) of Lake Taihu, China. Anaerobic microcosm incubation revealed that the rate of iron reduction at ZSB (4.42 μmol cm−3 d−1) in summer was almost 1.5 times higher than at ETL (3.13 μmol cm−3 d−1). Iron reduction accounted for 66.5% (ZSB) and 31.8% (ETL) of total anaerobic carbon mineralization, respectively. No detectable methanogenesis was found at ZSB, while methanogenesis was responsible for 16.7% of total anaerobic respiration in sediments of ETL. Geochemical analysis of solid phase constituents indicated that ZSB surface sediments experienced highly oxidizing conditions with much higher amorphous Fe(III) (71 mmol m−2) than ETL (11 mmol m−2). Conversely, AVS inventories at ETL (38 mmol m−2) were up to 30 times higher than at ZSB (1.27 mmol m−2), indicating significant sulfate reduction in sediments of ETL. Overall results suggested that varying carbon sources and distinct geochemical characterizations of the sediments in contrasting habitats significantly influenced the rate of iron reduction and the pathway of C mineralization in a large freshwater lake.
اظهر المزيد [+] اقل [-]Impact of air pollution and temperature on adverse birth outcomes: Madrid, 2001–2009 النص الكامل
2016
Arroyo, Virginia | Diaz, Julio | Carmona, Rocío | Ortiz, Cristina | Linares, Cristina
Low birth weight (<2500 g) (LBW), premature birth (<37 weeks of gestation) (PB), and late foetal death (<24 h of life) (LFD) are causes of perinatal morbi-mortality, with short- and long-term social and economic health impacts. This study sought to identify gestational windows of susceptibility during pregnancy and to analyse and quantify the impact of different air pollutants, noise and temperature on the adverse birth outcomes.Time-series study to assess the impact of mean daily PM2.5, NO2 and O3 (μg/m3), mean daily diurnal (Leqd) and nocturnal (Leqn) noise levels (dB(A)), maximum and minimum daily temperatures (°C) on the number of births with LBW, PB or LFD in Madrid across the period 2001–2009. We controlled for linear trend, seasonality and autoregression. Poisson regression models were fitted for quantification of the results. The final models were expressed as relative risk (RR) and population attributable risk (PAR).Leqd was observed to have the following impacts in LBW: at onset of gestation, in the second trimester and in the week of birth itself. NO2 had an impact in the second trimester. In the case of PB, the following: Leqd in the second trimester, Leqn in the week before birth and PM2.5 in the second trimester. In the case of LFD, impacts were observed for both PM2.5 in the third trimester, and minimum temperature. O3 proved significant in the first trimester for LBW and PB, and in the second trimester for LFD.Pollutants concentrations, noise and temperature influenced the weekly average of new-borns with LBW, PB and LFD in Madrid. Special note should be taken of the effect of diurnal noise on LBW across the entire pregnancy. The exposure of pregnant population to the environmental factors analysed should therefore be controlled with a view to reducing perinatal morbi-mortality.
اظهر المزيد [+] اقل [-]Distribution and fate of legacy and emerging contaminants along the Adriatic Sea: A comparative study النص الكامل
2016
Combi, Tatiane | Pintado-Herrera, Marina G. | Lara-Martin, Pablo A. | Miserocchi, Stefano | Langone, Leonardo | Guerra, Roberta
The spatial distributions and fates of selected legacy and emerging compounds were investigated and compared in surface sediments sampled along the Adriatic mud-wedge and in deep-sea regions from the southern Adriatic basin. Results indicated that the concentrations of legacy contaminants (PAHs, PCBs and DDTs) and emerging contaminants (tonalide, galaxolide, EHMC, octocrylene, BP3 and NP) ranged from 0.1 to 572 ng g−1 and from <LOD to 40.7 ng g−1, respectively. In general, higher concentrations and estimated burdens were detected in the northern Adriatic, highlighting the importance of the Po River as the major contributor for the inputs of legacy and emerging contaminants to sediments in the Adriatic Sea. Nevertheless, the prevalence of some UV filters and fragrances in the central and southern Adriatic indicates that the proximity to tourist areas and WWTPs discharges seems to affect the distribution of those compounds. The accumulation of contaminants in the deep-sea areas supports the inference that this region may act as an important repository for contaminants within the Adriatic Sea. Estimated annual contaminant accumulation reveals that both, legacy and emerging contaminants accumulate preferentially in the northern Adriatic (40–60% of the total annual contaminant accumulation), where the presence of legacy, and to a lesser extent emerging contaminants, are likely to pose an immediate or long-term hazard to resident biota.
اظهر المزيد [+] اقل [-]In situ determination of multiple polycyclic aromatic hydrocarbons uptake by crop leaf surfaces using multi-way models النص الكامل
2016
Sun, Haifeng | Guo, Shuai | Zhu, Na | Sang, Nan | Chen, Zhang
Polycyclic aromatic hydrocarbons (PAHs) in the atmosphere can partition into agricultural crops, which poses a potential risk to human health through the food chain. In this study, controlled chamber experiments were conducted to investigate the kinetic uptake of anthracene (Ant), phenanthrene (Phe), fluoranthene (Fla) and pyrene (Pyr), individually or as a mixture, by the leaf surfaces of living soybean and corn seedlings using the excitation-emission matrix (EEM) coupled with three-way parallel factor analysis (PARAFAC) and n-way partial least squares (n-PLS). The four selected PAHs achieved equilibrium between the air and the two living crop leaf surfaces over the 15-day monitoring period. Inter-species and inter-chemical variability existed in terms of the time required to achieve equilibrium, mass transfer coefficients (kAL) and the equilibrated adsorption capacity (EAC), which was mainly attributed to the different lg KOA values among the four PAHs and the variable leaf-wax content between the soybean and corn species. Compared with when the PAHs existed singly, the time required to achieve adsorption equilibrium was longer while the EAC was reduced for each of the four PAHs in a mixture, which was attributed to competitive adsorption among the coexisting components. These findings prove that the novel analytical method provides a novel platform for the in situ characterization of the environmental behaviors of multiple PAHs, with their spectra overlapping, between the air and plant skin. The coexistence of multiple PAHs in the air inhibits their individual uptake capacity by crop leaf skin, but increases the total adsorption of PAHs, potentially reducing crop security and increasing human health risk via the terrestrial food web.
اظهر المزيد [+] اقل [-]