خيارات البحث
النتائج 351 - 360 من 5,014
Effects of dissolved organic carbon on desorption of aged phenanthrene from contaminated soils: A mechanistic study النص الكامل
2019
Luo, Lei | Chen, Zien | Cheng, Yuan | Lv, Jitao | Cao, Dong | Wen, Bei
Dissolved organic carbon (DOC) has a major influence upon sorption/desorption and transport of hydrophobic organic contaminants (HOCs) in soil environments. However, the molecular mechanisms of DOC sorption and its effects on aged HOC desorption in contaminated soils still remain largely unclear. Here, effects of three different DOC (one from commercial peat and two from biochars produced at 300 °C and 500 °C pyrolysis temperatures, respectively) and oxalate (as a reference) on abiotic desorption behavior of aged phenanthrene from three agricultural soils were investigated. Results showed that desorption of aged phenanthrene from soils was predominantly dependent on soil organic carbon content. The presence of DOC and oxalate resulted in higher desorption of phenanthrene compared to water alone, and the effects were positively related to soil organic carbon content and DOC/oxalate concentration. The facilitating effects of DOC were further increased during the second consecutive desorption, whereas oxalate had no such effect. Ultra-high-resolution Fourier transform-ion cyclotron resonance-mass spectrometry confirmed the molecular fractionation of DOC at the soil-water interface during DOC sorption. Specifically, the DOC molecules with O-rich moieties were preferentially adsorbed, whereas the molecules with phenolic and aromatic structures were selectively retained in the soil solutions through competitive displacement and co-sorption reactions during sorption. The enriched phenyl structures in the retained DOC facilitated its association with phenanthrene in the solutions and thus the release of phenanthrene from the soils. In contrast, oxalate replaced some organic carbon from the soils and thus released the associated phenanthrene into the solutions. Our findings highlight the importance of the molecular composition and structure of DOC for the desorption of phenanthrene in soil-water environments, which may help improve our understanding of the release and transport of organic compounds in the environments.
اظهر المزيد [+] اقل [-]Development and deployment of integrated air pollution control, CO2 capture and product utilization via a high-gravity process: comprehensive performance evaluation النص الكامل
2019
Chen, Tse-Lun | Fang, Yun-Ke | Pei, Si-Lu | Pan, Shu-Yuan | Chen, Yi-Hung | Chiang, Pen-Chi
In this study, a proposed integrated high-gravity technology for air pollution control, CO2 capture, and alkaline waste utilization was comprehensively evaluated from engineering, environmental, and economic perspectives. After high-gravity technology and coal fly ash (CFA) leaching processes were integrated, flue gas air emissions removal (e.g., sulfate dioxide (SO2), nitrogen oxides (NOx), total suspended particulates (TSP)) and CO2 capture were studied. The CFA, which contains calcium oxide and thus, had high alkalinity, was used as an absorbent in removing air pollution residues. To elucidate the availability of technology for pilot-scale high-gravity processes, the engineering performance, environmental impact, and economic cost were simultaneously investigated. The results indicated that the maximal CO2, SO2, NOx, and TSP removal efficiencies of 96.3 ± 2.1%, 99.4 ± 0.3%, 95.9 ± 2.1%, and 83.4 ± 2.6% were respectively achieved. Moreover, a 112 kWh/t-CO2 energy consumption for a high-gravity process was evaluated, with capture capacities of 510 kg CO2 and 0.468 kg NOx per day. In addition, the fresh, water-treated, acid-treated, and carbonated CFA was utilized as supplementary cementitious materials in the blended cement mortar. The workability, durability, and compressive strength of 5% carbonated CFA blended into cement mortar showed superior performance, i.e., 53 MPa ±2.5 MPa at 56 days. Furthermore, a higher engineering performance with a lower environmental impact and lower economic cost could potentially be evaluated to determine the best available operating condition of the high-gravity process for air pollution reduction, CO2 capture, and waste utilization.
اظهر المزيد [+] اقل [-]Tree bark as a biomonitor for assessing the atmospheric pollution and associated human inhalation exposure risks of polycyclic aromatic hydrocarbons in rural China النص الكامل
2019
Niu, Lili | Xu, Chao | Zhou, Yuting | Liu, Weiping
Inhalation exposure to atmospheric polycyclic aromatic hydrocarbons (PAHs) is posing a great threat to human health. Biomass combustion in rural areas contributes greatly to the total PAH emission in China. To conduct a comprehensive risk assessment of ambient PAHs in rural China, a nationwide air sampling campaign was carried out in this study. The 16 U.S. Environmental Protection Agency priority PAHs in tree bark, which was employed as a passive air sampler, were analyzed. The summation of the 16 PAHs ranged from 11.7 to 12,860 ng/m³ in the air of rural China. The national median benzo(a)pyrene equivalent (BaPₑq) concentration was 18.4 ng/m³, with the range from 0.334 to 2497 ng/m³. The total inhalation carcinogenic risks of individual PAHs, with the exception for naphthalene, were very low (<1 × 10⁻⁶) at most of the sampling sites. The national median excess lifetime lung cancer risk associated with inhalation exposure to atmospheric PAHs was 20.3 × 10⁻⁶, corresponding to a population attributable fraction (PAF) of 3.38‰. Our estimations using tree bark were comparable to those reported in other studies and the uncertainties of the variables in the dataset were within the acceptable levels, demonstrating that tree bark is feasible for assessing the atmospheric PAH pollution and associated health risks. We feel that the outputs from this study can assist decision-makers focusing on protecting human health against exposure to atmospheric PAHs in rural China.
اظهر المزيد [+] اقل [-]Exposure to 17α-ethinyl estradiol during early pregnancy affects fetal growth and survival in mice النص الكامل
2019
Meyer, Nicole | Santamaria, Clarisa Guillermina | Müller, Judith Elisabeth | Schumacher, Anne | Rodriguez, Horacio Adolfo | Zenclussen, Ana Claudia
17α-ethinyl estradiol (EE2) is a synthetic compound widely used in the generation of contraceptive pills. EE2 is present in the urine of women taking contraceptives and its presence has been confirmed at increasing concentrations contaminating rivers all over the world. Because of this cycle, it can entry the human food chain when watering plants. A negative influence of EE2 on fertility and reproductive capacity of wildlife was already suggested. The short-term impact of exposure to contaminating EE2 on pregnancy outcome has not been addressed.Pregnant mice were exposed to either 0.005 μg (concentrations found in water) or 5 μg EE2/kg (contraceptive dose) body weight/day from gestation day 1–7 by oral gavage. Control mice received a 0.1% ethanol solution. High frequency ultrasound imaging was used to follow-up fetal and placental growth in vivo. Doppler measurements were utilized to analyze blood flow parameters in uterine and umbilical arteries. Mice were sacrificed at gd5, 10, and 14. We show that most fetuses of mothers exposed to the high EE2 dose die intrauterine at gd10, with implantation sizes beginning to be smaller already at gd8. Mothers exposed to the low EE2 dose show an impaired remodeling of the spiral arteries, a higher placental weight and pups that are large for gestational age. The insulin-like growth factor system that regulates fetal and placental growth and development is affected by the EE2 treatment.Our results show that a short-term exposure to EE2 during early pregnancy has severe consequences for fetal growth and survival depending on the dose. Exposition to synthetic estrogens affects placenta growth and angiogenesis. These findings urge to the study of mechanisms dysregulated upon environmental exposition to estrogens.
اظهر المزيد [+] اقل [-]Effect of differently methyl-substituted ionic liquids on Scenedesmus obliquus growth, photosynthesis, respiration, and ultrastructure النص الكامل
2019
Fan, Huiyang | Jin, Mingkang | Wang, Huan | Xu, Qianru | Xu, Lei | Wang, Chenxuanzi | Du, Shaoting | Liu, Huijun
Concerns have been raised regarding the ecotoxicity of ionic liquids (ILs) owing to their wide usage in numerous fields. Three imidazolium chloride ILs with different numbers of methyl substituents, 1-decyl-imidazolium chloride ([C10IM]Cl), 1-decyl-3-methylimidazolium chloride ([C10MIM]Cl), and 1-decyl-2,3-dimethylimidazolium chloride ([C10DMIM]Cl), were examined to assess their effects on growth, photosynthesis pigments content, chlorophyll fluorescence, photosynthetic and respiration rate, and cellular ultrastructure of Scenedesmus obliquus. The results showed that algal growth was significantly inhibited by ILs treatments. The observed IC50,48h doses were 0.10 mg/L [C10IM]Cl, 0.01 mg/L [C10MIM]Cl, and 0.02 mg/L [C10DMIM]Cl. The chlorophyll a, chlorophyll b, and total chlorophyll content declined, and the chlorophyll fluorescence parameters, minimal fluorescence yield (F0), maximal fluorescence yield (Fm), maximum quantum yield of PSII photochemistry (Fv/Fm), effective quantum yield of PSII [Y(II)], non-photochemical quenching (NPQ) and non-photosynthetic losses yield [Y(NO)] were notably affected by ILs in a dose-dependent manner. ILs affected the primary photosynthetic reaction, impaired heat dissipation capability, and diminished photosynthetic efficiency, indicating negative effects on photosystem II. The photosynthetic and respiration rates of algal cells were also reduced due to the ILs treatments. The adverse effects of ILs on plasmolysis and chloroplast deformation were examined using ultrastructural analyses; chloroplast swelling and lamellar structure almost disappeared after the [C10MIM]Cl treatment, and an increased number of starch grains and vacuoles was observed after all ILs treatments. The results indicated that one-methyl-substituted ILs were more toxic than non-methyl-substituted ILs, which were also more toxic than di-methyl-substituted ILs. The toxicity of the examined ILs showed the following order: [C10IM]Cl < [C10DMIM]Cl ≤ [C10MIM]Cl.
اظهر المزيد [+] اقل [-]Semi-volatile organic compounds in infant homes: Levels, influence factors, partitioning, and implications for human exposure النص الكامل
2019
Li, Hai-Ling | Liu, Li-Yan | Zhang, Zi-Feng | Ma, Wanli | Sverko, Ed | Zhang, Zhi | Song, Wei-Wei | Sun, Yu | Li, Yi-Fan
While infants are developing, they are easily affected by toxic chemicals existing in their environments, such as semi-volatile organic compounds (SVOCs): phthalates, polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and organophosphate esters (OPEs). However, the specific living environment of infants, including increased plastic products and foam floor mats, may increase the presence of these chemicals. In this study, 68 air, dust, and window film samples were collected from homes, with 3- to 6-month-old infant occupants, to analyze phthalates, PAHs, PBDEs, and OPEs. High detection rates and concentrations suggest that these SVOCs are widespread in infant environments and are associated with cooking methods, smoking habits, the period of time after decoration, and room floors. The partitioning behavior of SVOCs indicates that the logarithms of the dust/gas-phase air partition coefficient (logKD) and the window film/gas-phase air partition coefficient (logKF) in homes are not at an equilibrium state when the logarithm of the octanol/air partition coefficient (logKOA) is less than 8 or greater than 11. Considering the 3 exposure routes, ingestion and dermal absorption have become the main routes of infant exposure to phthalates and OPEs, and ingestion and inhalation have become the dominant routes of exposure to PAHs and PBDEs. The total carcinogenic risk of SVOCs, which have carcinogenic toxicities, via ingestion and dermal absorption for infants in homes exceeds the acceptable value, suggesting that the current levels of these SVOCs in homes might pose a risk to infant health.
اظهر المزيد [+] اقل [-]Toxicity comparison of three imidazolium bromide ionic liquids to soil microorganisms النص الكامل
2019
Cheng, Chao | Ma, Junchao | Wang, Jinhua | Du, Zhongkun | Li, Bing | Wang, Jun | Gao, Chong | Zhu, Lusheng
Ionic liquids (ILs) are extensively used in several chemistry fields. And research about the effects of ILs on soil microbes is needed. In this study, brown soil was exposed to 1-butyl-3-methylimidazolium bromide ([C₄mim]Br), 1-hexyl-3-methylimidazolium bromide ([C₆mim]Br) and 1-decyl-3-methylimidazolium bromide ([C₁₀mim]Br). The toxicities of the three ILs are evaluated by measuring the soil culturable microbial number, enzyme activity, microbial diversity and, abundance of the ammonia monooxygenase (amoA) genes of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Results showed that all tested ILs caused a decrease in culturable microbial abundance. Tested ILs exposure inhibit urease activity and promote acid phosphatase and β-glucosidase activities. Tested ILs reduced soil microbial diversity and the abundances of AOB-amoA and AOA-amoA genes significantly. After a comparison of the integrated biomarker response (IBR) index, the toxicities of tested ILs to soil microorganisms were as follows: [C₁₀mim]Br > [C₆mim]Br > [C₄mim]Br. Among all collected biomarkers, the abundance of the AOA-amoA gene was the most sensitive one and was easily affected after ILs exposure.
اظهر المزيد [+] اقل [-]Fly-ash-incorporated electrospun zinc oxide nanofibers: Potential material for environmental remediation النص الكامل
2019
Pant, Bishweshwar | Ojha, Gunendra Prasad | Kim, Hak-Yong | Park, Mira | Park, Soo-Jin
Fly ash (FA), a solid waste generated in thermal power plants, is considered an environmental pollutant. Therefore, measures must be taken to dispose of FA in an environmentally friendly manner. In this paper, an electrospinning technique was employed to incorporate FA particles onto zinc oxide nanofibers (ZnO NFs), and the product (FA/ZnO composite) was used for the removal of methylene blue (MB) from the water. Herein, ZnO NFs may serve as effective semiconductor photocatalysts and provide sufficient surface area for FA, while the FA particles serve as an effective adsorbent. The adsorption capacity and photocatalytic efficiency of the as-synthesized nanocomposite fibers were enhanced compared to those of the pristine ZnO NFs, and this result is attributed to the uniform distribution of FA on the surface of the ZnO NFs. The as-synthesized nanocomposite could have great significance in wastewater treatment.
اظهر المزيد [+] اقل [-]Impacts of hazardous metals and PAHs in fine and coarse particles with long-range transports in Taipei City النص الكامل
2019
Xu, Jinyou | Chiang, Hung-Che | Chen, Mu-Jean | Yang, Tzu-Ting | Wu, Yuh-Shen | Chen, Yu-Cheng
This study assessed the impact on air quality and health risk by long-range transported (LRT) PM2.5-10- and PM2.5-bound metals and PAHs in Taipei City, Taiwan. Several methods with receptor aerosol measurements were used to quantify the effect of LRT. The hybrid single particle lagrangian integrated trajectory model (HYSPLIT) was used in conjunction with the potential source contribution function (PSCF) to distinguish the LRT aerosols. By using a general linear model (GLM) with a marginal mean and positive matrix fraction (PMF), this study also evaluated the annual increased level of LRT (AIRLRT) for each source contribution to the concentration and the resultant health risk of particle-bound metals and polycyclic aromatic hydrocarbons (PAHs). The LRT influenced fine-sized metals and PAHs rather than coarse-sized ones. We found that the level of PM2.5-bound toxic metals (Pb, Cd, and As) and PAHs (Benzo[a]pyrene and dibenzo[a,e]pyrene) could increase by 90% under the influence of LRT in 2014, while an AIRLRT value of 25% for the PM2.5 mass concentration was observed. Overall, the excess cancer risk (ECR) resulting from PM2.5-bound metal and PAH exposures was 6.40 × 10−5 in relation to coal combustions (20.7%), traffic-related emissions (59.7%) and re-suspended aerosols (19.6%). Among these contributors, LRT-related metals and PAHs in PM2.5 accounted for 51% of the total ECR.
اظهر المزيد [+] اقل [-][SnS4]4- clusters modified MgAl-LDH composites for mercury ions removal from acid wastewater النص الكامل
2019
Chen, Lihong | Xu, Haomiao | Xie, Jiangkun | Liu, Xiaoshuang | Yuan, Yong | Liu, Ping | Qu, Zan | Yan, Naiqiang
The high acidity of mercury ions (Hg²⁺) contained wastewater can complicate its safe disposal. MgAl-LDHs supported [SnS₄]⁴⁻ clusters were synthesized for Hg²⁺ removal from acid wastewater. The active sites of [SnS₄]⁴⁻ clusters were inserted into the interlayers of MgAl-LDHs using an ion-exchange method. The experimental results indicated that [SnS₄]⁴⁻/MgAl-LDHs composite can obtain higher than 99% Hg²⁺ removal efficiency under low pH values. The maximum mercury adsorption capacity is 360.6 mg g⁻¹. It indicated that [SnS₄]⁴⁻ clusters were the primary active sites for mercury uptake, existing as stable Hg₂(SnS₄) on the surface of the composite. Under low pH values, such a composite seems like a “net” for HgSO₄ molecules, exhibiting great potential for mercury removal from acid solutions. Moreover, the co-exist metal ions such as Zn²⁺, Na⁺, Cd²⁺, Cr³⁺, Pb²⁺, Co²⁺, and Ni²⁺ have no significant influences on Hg²⁺ removal. The adsorption isotherms and kinetics were also studied, indicating that the adsorption mechanism follows a monolayer chemical adsorption model. The [SnS₄]⁴⁻/MgAl-LDHs composite exhibits a great potential for Hg²⁺ removal from acid wastewater.
اظهر المزيد [+] اقل [-]