خيارات البحث
النتائج 3641 - 3650 من 4,033
Speciation of dissolved copper in human impacted freshwater and saltwater lakes
2016
Wang, Deli | Gao, Yaqin | Larsson, Katarina | Lin, Xiongxiang
China’s natural waters are experiencing an increasingly anthropogenic perturbation widely including acidification and hypoxia, and toxic metals including copper (Cu) are subject to a series of reactions including chemical speciation and transformation. However, there is still little information available regarding such alterations of metal behaviors in China’s natural waters. By using solid phase extraction technique, this study for the first time measured total dissolved Cu, and different Cu species: toxic labile Cu (referred to those free cupric ions and some weakly organic compounds adsorbed onto Chelex-100 resins), the organic refractory Cu (referred to those adsorbed onto C18 resins after passing through Chelex-100 resins), and residual Cu (obtained by subtracting labile and organic refractory fractions from the total) in a freshwater lake (the Lover) and a saltwater lagoon (the Yundang) in Xiamen, China. Our results demonstrated that both waters were characterized with relatively low levels of total dissolved Cu (5–10 nM), as a result of a net removal process dominated by particle adsorption and precipitation. Relatively high proportion of organic refractory Cu (as high as 50 %) was observed in the saltwater Yundang lagoon as a result of organic matter production and/or discharges followed by complexation nearby. On the other hand, the toxic labile Cu accounted for >40 % of the total dissolved Cu pool in these waters, and particularly the increased proportion of toxic labile Cu (as high as 70 %) occurred in the bottom sulfidic Lover Lake. Our study provides clear evidence that toxic labile Cu could be transformed under reducing environments such as deep sulfidic waters of the Lover Lake (Xiamen, China), and the releases of toxic labile metals are increasingly threatening nearby aquatic ecosystems.
اظهر المزيد [+] اقل [-]Optimization of nitrate removal from wastewater with a low C/N ratio using solid-phase denitrification
2016
Zhang, Qian | Ji, Fangying | Xu, Xiaoyi
In this study, the optimization of nitrate removal from wastewater with a low C/N ratio using solid-phase denitrification was investigated. Biodegradable polymer, an attractive alternative to liquid carbon sources for biological denitrification, was used as a carbon source and biofilm support for nitrate removal. An experiment was conducted based on a central composite design (CCD) with response surface methodology (RSM). A secondary polynomial regression with nitrate removal efficiency as response value was developed. Based on statistical analysis, the nitrate removal model was highly significant with very low probability values (<0.0001). At the optimal conditions for nitrate removal (hydraulic retention time (HRT), 3.5 h; influent NO₃ ⁻-N concentration, 14.73 mg/L; and influent CODCᵣ concentration, 15.00 mg/L), the nitrate removal efficiency was 99.23 %. The results of an ANOVA and response surface analysis showed that HRT, influent NO₃ ⁻-N concentration, influent CODCᵣ concentration, and the interaction between the HRT and influent CODCᵣ concentration significantly affected the nitrate removal efficiency (P < 0.05). In solid-phase denitrification process, electron donor for denitrification could be obtained by biological degradation of biodegradable polymer. Therefore, the influent CODCᵣ concentration has no major effect on nitrate removal efficiency compared with that of HRT and influent NO₃ ⁻-N concentration.
اظهر المزيد [+] اقل [-]Mass distributions and morphological and chemical characterization of urban aerosols in the continental Balkan area (Belgrade)
2016
Đorđević, D. | Buha, J. | Stortini, A. M. | Mihajlidi-Zelić, A. | Relić, D. | Barbante, C. | Gambaro, A.
This work presents characteristics of atmospheric aerosols of urban central Balkans area, using a size-segregated aerosol sampling method, calculation of mass distributions, SEM/EDX characterization, and ICP/MS analysis. Three types of mass distributions were observed: distribution with a pronounced domination of coarse mode, bimodal distribution, and distribution with minimum at 1 μm describing the urban aerosol. SEM/EDX analyses have shown morphological difference and variation in the content of elements in samples. EDX spectra demonstrate that particles generally contain the following elements: Al, Ca, K, Fe, Mg, Ni, K, Si, S. Additionally, the presence of As, Br, Sn, and Zn found in air masses from southeast segment points out the anthropogenic activities most probably from mining activities in southeastern part of Serbia. The ratio Al/Si equivalent to the ratio of desert dust was associated with air masses coming from southeastern and southwestern segments, pointing to influences from North Africa and Middle East desert areas whereas the Al/Si ratio in other samples is significantly lower. In several samples, we found high values of aluminum in the nucleation mode. Samples with low share of crustal elements in the coarse mode are collected when Mediterranean air masses prevailed, while high share in the coarse mode was associated with continental air masses that could be one of the approaches for identification of the aerosol origin.
اظهر المزيد [+] اقل [-]Cryptosporidium and cryptosporidiosis: the African perspective
2016
Aldeyarbi, Hebatalla M. | Abu El-Ezz, Nadia M. T. | Karanis, Panagiotis
The present overview discusses the findings of cryptosporidiosis research conducted in Africa and highlights the currently available information on Cryptosporidium epidemiology, genetic diversity, and distribution on the African continent, particularly among vulnerable populations, including children. It also emphasizes the burden of cryptosporidiosis, which is underestimated due to the presence of many silent asymptomatic carriers.Cryptosporidiosis is recognized as one of the leading causes of childhood diarrhea in African countries. It has dramatic adverse effects on child growth and development and causes increased mortality on a continent where HIV, poverty, and lack of sanitation and infrastructure increase the risk of cryptosporidial waterborne infection.
اظهر المزيد [+] اقل [-]Influence of filtration velocity on DON variation in BAF for micropolluted surface water treatment
2016
Ma, Teng-Fei | Chen, You-Peng | Kang, Jia | Gao, Xu | Guo, Jin-Song | Fang, Fang | Zhang, Xiao-Tian
Biological aerated filters (BAFs) are widely used for the treatment of micropolluted surface water. However, the biological process produces dissolved organic nitrogen (DON), which, as precursors of nitrogenous disinfection by-products, pose potential threats to drinking water safety. Therefore, to control DON in BAF effluent, it is necessary to study the influence of BAF operation parameters on DON production. In this study, the influence of filtration velocity in a BAF on DON production was investigated. Under different filtration velocity (0.5, 2, and 4 m/h) conditions, profiles of DON concentrations along the media layer were measured. The profile at a filtration velocity of 0.5 m/h showed a decreasing trend, and the ones under filtration velocities of 2 and 4 m/h fluctuated in a small range (from 0.1 to 0.4 mg/L). Moreover, the relatively high filtration velocities of 2 and 4 m/h resulted in a lower level of DON concentration. Additionally, 3D excitation-emission matrix fluorescence spectroscopy was used to characterize DON. It is found that the patterns of DON at a relatively high filtration velocity condition (4 m/h) were obviously different from the ones under low filtration velocity conditions (0.5 and 2 m/h).
اظهر المزيد [+] اقل [-]Role of metals in free radical generation and genotoxicity induced by airborne particulate matter (PM2.5) from Pune (India)
2016
Yadav, Suman | Jan, Rohi | Roy, Ritwika | Satsangi, P Gursumeeran
In the present study, metal-facilitated free radical generation in particulate matter (PM) and its association with deoxyribonucleic acid (DNA) damage were studied. The examined data showed that the concentration of fine PM in Pune exhibited seasonal variations. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to examine the metal composition, which showed the presence of metals such as Cu, Zn, Mn, Fe, Co, Cr, Pb, Cd, and Ni. Fe metal was present in the highest concentrations in both the seasons, followed by Zn. The scanning electron microscopy-energy-dispersive spectrometer (SEM-EDS) results also demonstrated that the fine PM particles deposited in summer samples were less than those of winter samples, suggesting that the PM load in winter was higher as compared to that in summer. Elemental mapping of these particles substantiates deposition of metals as Fe, Zn, etc. on particles. The electron paramagnetic species (EPR) technique was utilized for free radical detection, and plasmid DNA assay was utilized to study the genotoxicity of ambient fine PM. Obtained g values show the presence of radicals in PM samples of Pune. PM contains the C-centered radical with a vicinal oxygen atom (g = 2.003). In addition to this, the g value for Fe was also observed. Therefore, we intend that the radicals related with fine PM comprise metal-mediated radicals and produce DNA damage. The plasmid DNA assay results indicated that the TM₅₀ values (toxic mass of PM causing 50 % of plasmid DNA damage) of PM exhibited seasonal variations with higher TM₅₀ values for summer and lower TM₅₀ values during winter.
اظهر المزيد [+] اقل [-]Effects of binding materials on microaggregate size distribution in bauxite residues
2016
Zhu, Feng | Huang, Nan | Xue, Shengguo | Hartley, William | Li, Yiwei | Zou, Qi
It is recognized that for successful establishment of a vegetation cover on bauxite residue disposal areas, soil formation and a greater understanding of the processes of soil development are crucial. The stability of microaggregates is a very important physical property that prevents erosion in bauxite residues. Samples were collected from a disposal area in Central China to determine not only the mechanism of aggregation but also clay dispersion. Colloidal stability was assessed by determining organic matter, carbonate, electrolyte, clay mineral, and iron-aluminum oxide forms, as these would contribute to their stability. Organic matter improved microaggregate stability by combining with clay particles and polyvalent cations to form macroaggregates. Polyvalent cations such as calcium had a positive effect on particle flocculation, while organic molecules were more effective at stabilizing microaggregates. Removal of salinity dispersed silt-size aggregates into clay-size aggregates and reduced microaggregate stability. Calcium improved particle aggregation, while sodium had the reverse effect. Quartz powder was added to the residues but did not show any cementing effect, while free and amorphous iron-aluminum oxides were effective binding agents for microaggregate formation. We propose that the presence of organic matter and polyvalent cations, together with incorporation of organic carbon and calcium minerals, may enhance the stability of this material and prove beneficial toward improving its physical condition.
اظهر المزيد [+] اقل [-]Sources and environmental processes of polycyclic aromatic hydrocarbons and mercury along a southern slope of the Central Himalayas, Nepal
2016
Pokhrel, Balram | Gong, Ping | Wang, Xiaoping | Gao, Shaopeng | Wang, Chuanfei | Yao, Tandong
Semi-volatile pollutants can undergo long-range atmospheric transport from low-altitude source regions to high-altitude regions and then accumulate in surface matrices (soil and plants). The Himalayas is the highest mountain range worldwide, but there have been limited studies on the source, transport, and deposition of polycyclic aromatic hydrocarbons (PAHs) and mercury (Hg) in the region. In this study, atmospheric PAHs, and the PAHs and Hg in soil and foliage were determined along a transect on a southern slope of the Himalayas, Nepal. The study showed anthropogenic emissions of PAHs and Hg occurred in the lowland areas of Nepal, and upslope transport to the high-altitude regions happened for both pollutants. During the upslope transport, forest filter effect and snow scavenging may be the important factors that enhance the deposition of PAHs, contributing to the negative pattern between concentrations of PAHs and altitudes. On the contrary, more Hg accumulated in the high Himalayas, relating to the enhanced deposition in the high altitude caused by the higher input from upper atmosphere. Graphical abstract Distribution and environmental processes of PAHs and Hg along the southern slope of Himalayan mountain
اظهر المزيد [+] اقل [-]Spatio-temporal characteristics of livestock and their effects on pollution in China based on geographic information system
2016
Liu, Ruimin | Xu, Fei | Liu, Yongyan | Wang, Jiawei | Yu, Wenwen
Livestock pollution, caused by rural household’s scatter breeding mainly, is one of the major non-point sources. Different animal manures are abundant with different nutrients. Adopting the policies, management practices, and technologies related to livestock production based on livestock structure analysis can improve the efficiency on preventing pollution. Based on statistical data, the component structure of livestock was analyzed and corresponding effect on pollution was evaluated during the period of 1992–2012 in China. The results showed that the average annual growth rate (AAGR) of total China was 1.58 % during the 20 years. Larger amounts of livestock were concentrated in Southwest China and East China. In the view of component structure, each type of livestock had different distribution characteristics and constant increasing amounts were presented during the 20 years. Cattle took the largest proportion in almost every province, and the number of heads was over 40 % of all the livestock quantity for most provinces. Pollution of total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) caused by livestock excretion in East and Southeast China was much more serious than that in other regions. However, the load of COD was far less than that of TN and TP. Cattle accounted most for the livestock pollution, and swine was the second one. The intensity characteristics of TN, TP, and COD were different from that of total pollution loads. The spatio-temporal characteristics of amounts and component structure of livestock were influenced by three kinds of factors (natural, economic, and social), such as climate, topography, modes of production, feed grain sector, related policies, and area of the study regions. Different livestock excrements had different impacts on environment. According to various livestock structures and economy conditions, different disposal methods should be adopted.
اظهر المزيد [+] اقل [-]Improvement of oxygen-containing functional groups on olive stones activated carbon by ozone and nitric acid for heavy metals removal from aqueous phase
2016
Bohli, Thouraya | Ouederni, Abdelmottaleb
Recently, modification of surface structure of activated carbons in order to improve their adsorption performance toward especial pollutants has gained great interest. Oxygen-containing functional groups have been devoted as the main responsible for heavy metal binding on the activated carbon surface; their introduction or enhancement needs specific modification and impregnation methods. In the present work, olive stones activated carbon (COSAC) undergoes surface modifications in gaseous phase using ozone (O₃) and in liquid phase using nitric acid (HNO₃). The activated carbon samples were characterized using N₂ adsorption–desorption isotherm, SEM, pHpzc, FTIR, and Boehm titration. The activated carbon parent (COSAC) has a high surface area of 1194 m²/g and shows a predominantly microporous structure. Oxidation treatments with nitric acid and ozone show a decrease in both specific surface area and micropore volumes, whereas these acidic treatments have led to a fixation of high amount of surface oxygen functional groups, thus making the carbon surface more hydrophilic. Activated carbon samples were used as an adsorbent matrix for the removal of Co(II), Ni(II), and Cu(II) heavy metal ions from aqueous solutions. Adsorption isotherms were obtained at 30 °C, and the data are well fitted to the Redlich–Peterson and Langmuir equation. Results show that oxidized COSACs, especially COSAC(HNO₃), are capable to remove more Co(II), Cu(II), and Ni(II) from aqueous solution. Nitric acid-oxidized olive stones activated carbon was tested in its ability to remove metal ions from binary systems and results show an important maximum adsorbed amount as compared to single systems.
اظهر المزيد [+] اقل [-]