خيارات البحث
النتائج 3671 - 3680 من 4,033
Vanadium removal and recovery from bauxite residue leachates by ion exchange النص الكامل
2016
Gomes, Helena I. | Jones, A. P. (Ashley P.) | Rogerson, M. (Mike) | Burke, Ian T. | Mayes, William M.
Bauxite residue is an important by-product of the alumina industry, and current management practices do not allow their full valorisation, especially with regard to the recovery of critical metals. This work aims to test the efficiency of ion exchange resins for vanadium (V) removal and recovery from bauxite residue leachates at alkaline pH (11.5 and 13). As an environmental pollutant, removal of V from leachates may be an obligation of bauxite residue disposal areas (BRDA) long-term management requirements. Vanadium removal from the leachate can be coupled with the recovery, and potentially can be used to offset long-term legacy treatment costs in legacy sites. Kinetics studies were performed to understand the adsorption process. The rate kinetics for the V adsorption was consistent with the pseudo-first-order kinetic model, with a higher adsorption rate for pH 11.5 (1.2 min⁻¹). Adsorption isotherm data fitted better to Freundlich equations than to the Langmuir model. The maximum adsorption capacity (Langmuir value q ₘₐₓ) was greatest for pH 13 (9.8 mg V g⁻¹ resin). In column tests, breakthrough was reached at 70 bed volumes with the red mud leachate at pH 13, while no breakthrough was achieved with the effluent at pH 11.5. In regeneration, 42 and 76 % of V were eluted from the resin with 2 M NaOH from the red mud leachate at pH 13 and 11.5, respectively. Further optimization will be needed to upscale the treatment.
اظهر المزيد [+] اقل [-]Response of microalgae to elevated CO2 and temperature: impact of climate change on freshwater ecosystems النص الكامل
2016
Li, Wei | Xu, Xiaoguang | Fujibayashi, Megumu | Niu, Qigui | Tanaka, Nobuyuki | Nishimura, Osamu
To estimate the combined effects of elevated CO₂ and temperature on microalgae, three typical and worldwide freshwater species, the green alga Scenedesmus acuminatus, the diatom Cyclotella meneghiniana, and the cyanobacterium Microcystis aeruginosa, as well as mixes of these three species were continuously cultured in controlled environment chambers with CO₂ at 390 and 1000 ppm and temperatures of 20, 25, and 30 °C. CO₂ and temperature significantly affected the production of microalgae. The cell productivity increased under elevated CO₂ and temperature. Although the green alga dominated in the mixed culture within all CO₂ and temperature conditions, rising temperature and CO₂ intensified the competition of the cyanobacterium with other microalgae. CO₂ affected the extracellular polymeric substances (EPS) characteristics of the green alga and the cyanobacterium. Elevated CO₂ induced the generation of humic substances in the EPS fractions of the green alga, the cyanobacterium, and the mixed culture. The extracellular carbohydrates of the diatom and the extracellular proteins of the cyanobacterium increased with elevated CO₂ and temperature, while the extracellular carbohydrates and proteins of the green alga and the mixes increased under elevated CO₂ and temperature. There were synergistic effects of CO₂ and temperature on the productivity and the EPS of microalgae. Climate change related CO₂ and temperature increases will promote autochthonous organic carbon production in aquatic ecosystems and facilitate the proliferation of cyanobacteria, which potentially changes the carbon cycling and undermines the functioning of ecosystems.
اظهر المزيد [+] اقل [-]Land spreading of sewage sludge in forest plantations: effects on the growth of the duckweed Lemna minor and trace metal bioaccumulation in the snail Cantareus aspersus النص الكامل
2016
Mohamed, Bourioug | Frédéric, Gimbert | Laurence, Alaoui-Sehmer | Pierre-Marie, Badot | Badr, Alaoui-Sossé | Lotfi, Aleya
Wastewater plants generated annually millions of tons of sewage sludge (SS). Large amounts of this organic residue are spread on agricultural lands as a fertilizer, although it is viewed as a major potential source of contamination, presenting a danger to the terrestrial and aquatic environments. This study was undertaken to evaluate the impact of this practice on the duckweed Lemna minor and the snail Cantareus aspersus. Sludge was applied to soil either at six different loading rates equal to 0, 0.4, 3, 10, 30, and 60 tons dry matter (DM) ha⁻¹ for L. minor test or at three rates equal to 0, 30, and 60 tons DM ha⁻¹ for C. aspersus test. At the highest rate of SS application (60 tons DM ha⁻¹), the eluates showed that an increase in pH (6.1) resulted in a decrease in Al levels. Thus, the high stimulation of L. minor growth observed after this high rate of SS application can be explained by (i) a reduction in Al toxicity after precipitation and (ii) macro- and micronutrient enrichment. At a rate of SS application of only 30 tons DM ha⁻¹, growth appeared to be slightly significant (p < 0.05), in spite of the significant increase in essential mineral elements. However, it is very difficult to discriminate between Al toxicity and pH effects. For the test with C. aspersus, the snail biomass was not affected by sludge application over the exposure period. Mortality was extremely low, with a rate of less than 4 % at the last sampling date. Yet, Cu, Pb, and Cd accumulated significantly in the soft body of snails exposed to SS application, suggesting that the amount of metals excreted is lower than that absorbed. In contrast, Zn levels remain constant, inferring that absorption and elimination of Zn are balanced at the beginning of the experiment.
اظهر المزيد [+] اقل [-]The effect of U speciation in cultivation solution on the uptake of U by variant Sedum alfredii النص الكامل
2016
Du, Liang | Feng, Xiaojie | Huang, Zhenling | Liu, Borui | Jin, Yongdong | Fang, Zhenggang | Zhang, Dong | Liu, Ning | Wang, Ruibing | Xia, Chuanqin
In the present study, five plant species were screened for uranium uptake using a hydroponic experimental set-up. The effect of the U concentration, pH, as well as the presence of carbonates, phosphates, and organic acids (lactic acid, malic acid, citric acid) on the uptake of U by variant S. alfredii (V S. alfredii) and wild S. alfredii (W S. alfredii) were investigated. Results showed that V S. alfredii exhibited higher U content in the roots than the other four plants and with the increase of U concentration in the solution, the U uptake by V S. alfredii and W S. alfredii increased. The results also showed that different U speciation in different cultivation solution took an important role on the uptake of U in variant Sedum alfredii: at pH 6.5, U hydrolysis species (UO₂)₃(OH)₅ ⁺is predominant and the U concentrations in V S. alfredii roots reached a maximum value (3.7 × 10⁴ mg/kg). U complexation with carbonates, phosphates, and some organic acids in the solution resulted in a decrease in the U content in the roots except for lactic acid. Our researches highlight the correlations between U speciation and the uptake on V S. Alfredii, which will be helpful for improved removal of U from the groundwater using phytoremediation method.
اظهر المزيد [+] اقل [-]Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event النص الكامل
2016
Zhang, Songhe | Pang, Si | Wang, Peifang | Wang, Chao | Han, Nini | Liu, Bin | Han, Bing | Li, Yi | Anim-Larbi, Kwaku
Stormwater runoff is generally characterized as non-point source pollution. In the present study, antibiotic concentration and antibiotic susceptibilities of cultivable heterotrophic bacteria were investigated in two small shallow urban lakes before and after strong storm event. Several antibiotics, lactose-fermenting bacteria and cultivable heterotrophic bacteria concentrations increased in surface water and/or surface sediment of two small urban lakes (Lake Xuanwu and Wulongtan) after strong storm event. In general, the frequencies of bacteria showing resistance to nine antibiotics increased after storm event. Based on the 16S rRNA genes of 50 randomly selected isolates from each water sample of two lakes, Aeromonas and Bacillus were dominant genera in samples from two lakes, while genera Proteus and Lysinibacillus were the third abundant genera in Lake Xuanwu and Wulongtu, respectively. Presences of nine antibiotic resistance genes (ARGs) in the 100 isolates were detected and most of these isolates harbored at least two ARGs with different functions. The detection frequency of ARGs in Gram-negative isolates was higher than that in Gram-positive isolates. The most prevalent integron in 100 isolates was int(II) (n = 28), followed by int(I) (n = 17) and int(III) (n = 17). Our results indicate that strong storm events potentially contribute to the transfer of ARGs and antibiotic-resistant bacteria from land-sewer system to the urban Lakes.
اظهر المزيد [+] اقل [-]Multiple effects of a commercial Roundup® formulation on the soil filamentous fungus Aspergillus nidulans at low doses: evidence of an unexpected impact on energetic metabolism النص الكامل
2016
Nicolas, Valérie | Oestreicher, Nathalie | Vélot, Christian
Soil microorganisms are highly exposed to glyphosate-based herbicides (GBH), especially to Roundup® which is widely used worldwide. However, studies on the effects of GBH formulations on specific non-rhizosphere soil microbial species are scarce. We evaluated the toxicity of a commercial formulation of Roundup® (R450), containing 450 g/L of glyphosate (GLY), on the soil filamentous fungus Aspergillus nidulans, an experimental model microorganism. The median lethal dose (LD₅₀) on solid media was between 90 and 112 mg/L GLY (among adjuvants, which are also included in the Roundup® formulation), which corresponds to a dilution percentage about 100 times lower than that used in agriculture. The LOAEL and NOAEL (lowest- and no-observed-adverse-effect levels) associated to morphology and growth were 33.75 and 31.5 mg/L GLY among adjuvants, respectively. The formulation R450 proved to be much more active than technical GLY. At the LD₅₀ and lower concentrations, R450 impaired growth, cellular polarity, endocytosis, and mitochondria (average number, total volume and metabolism). In contrast with the depletion of mitochondrial activities reported in animal studies, R450 caused a stimulation of mitochondrial enzyme activities, thus revealing a different mode of action of Roundup® on energetic metabolism. These mitochondrial disruptions were also evident at a low dose corresponding to the NOAEL for macroscopic parameters, indicating that these mitochondrial biomarkers are more sensitive than those for growth and morphological ones. Altogether, our data indicate that GBH toxic effects on soil filamentous fungi, and thus potential impairment of soil ecosystems, may occur at doses far below recommended agricultural application rate.
اظهر المزيد [+] اقل [-]Influence of Al-oxide on pesticide sorption to woody biochars with different surface areas النص الكامل
2016
Shou, Jianxin | Dong, Huaping | Li, Jianfa | Zhong, Jiaxing | Li, Saijun | Lü, Jinhong | Li, Yimin
Biochars’ properties will change after application in soil due to the interactions with soil constituents, which would then impact the performance of biochars as soil amendment. For a better understanding on these interactions, two woody biochars of different surface areas (SA) were physically treated with aluminum oxide (Al-oxide) to investigate its potential influence on biochars’ sorption property. Both the micropore area and mesopore (17∼500 Å in diameter) area of the low-SA biochar were enhanced by at least 1.5 times after treatment with Al-oxide, whereas the same treatment did not change the surface characteristics of the high-SA biochar due partly to its well-developed porosity. The enhanced sorption of the pesticide isoproturon to the Al-oxide-treated low-SA biochar was observed and is positively related to the increased mesopore area. The desorption hysteresis of pesticide from the low-SA biochar was strengthened because of more pesticide molecules entrapped in the expanded pores by Al-oxide. However, no obvious change of pesticide sorption to the high-SA biochar after Al-oxide treatment was observed, corresponding to its unchanged porosity. The results suggest that the influence of Al-oxide on the biochars’ sorption property is dependent on their porosity. This study will provide valuable information on the use of biochars for reducing the bioavailability of pesticides.
اظهر المزيد [+] اقل [-]In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles النص الكامل
2016
Xu, Yanzhe | Fang, Zhanqiang | Tsang, Eric Pokeung
The potential for nanoscale phosphate amendments to remediate heavy metal contamination has been widely investigated, but the strong tendency of nanoparticles to form aggregates limits the application of this technique in soil. This study synthesized a composite of biochar-supported iron phosphate nanoparticle (BC@Fe₃(PO₄)₂) stabilized by a sodium carboxymethyl cellulose to improve the stability and mobility of the amendment in soil. The sedimentation test and column test demonstrated that BC@Fe₃(PO₄)₂ exhibited better stability and mobility than iron phosphate nanoparticles. After 28 days of simulated in situ remediation, the immobilization efficiency of Cd was 60.2 %, and the physiological-based extraction test bioaccessibility was reduced by 53.9 %. The results of sequential extraction procedures indicated that the transformation from exchangeable (EX) Cd to organic matter (OM) and residue (RS) was responsible for the decrease in Cd leachability in soil. Accordingly, the pot test indicated that Cd uptake by cabbage mustard was suppressed by 86.8 %. Compared to tests using iron phosphate nanoparticles, the addition of BC@Fe₃(PO₄)₂ to soil could reduce the Fe uptake of cabbage mustard. Overall, this study revealed that BC@Fe₃(PO₄)₂ could provide effective in situ remediation of Cd in soil.
اظهر المزيد [+] اقل [-]The use of juvenile Solea solea as sentinel in the marine platform of the Ebre Delta: in vitro interaction of emerging contaminants with the liver detoxification system النص الكامل
2016
Crespo, Marina | Solé, Montserrat
Juveniles of Solea solea were sampled during the spring season in three consecutive years at a marine site by the mouth of the Ebre river. The aim was to assess if the extractive works from the toxic load upstream the river could be reflected on the health status of the fish living at the immediate sea. The biomarkers selected for the in vivo field study are commonly used as indicators of chemical exposures. They include activities of energy metabolism: lactate dehydrogenase (LDH) and citrate synthase (CS); neurotoxicity: cholinesterases (ChE); xenobiotic metabolism: cytochrome P450 (CYP)-dependent: EROD and BFCOD, carboxylesterase (CbE), glutathione S-transferase (GST) and uridine diphosphate glucuronyltransferase (UDPGT); and oxidative stress parameters such as catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPX) as well as levels of lipid peroxidation (LPO). These biomarkers were mostly analysed in liver but also in gills and muscle depending on their particular tissue distribution and role. A complementary in vitro approach was also sought to see the capacity of common emerging contaminants (pharmaceuticals and personal care products; PPCPs) to interact with the liver microsomal detoxification system of the fish (EROD, BFCOD and CbE activities). The results indicated that in fish sampled in 2015 there was an enhancement in detoxification parameters (EROD, BFCOD and gill GR), muscular ChEs and gill CS, but a decrease in CbE activity and a marked oxidative stress situation (increased LPO and decreased CAT activity). Also, 4 out of the 10 PPCPs tested in vitro were able to interact with the CYP3A4 (BFCOD) enzymatic system while the lipid regulators simvastatin and fenofibrate inhibited CbE activity, as it occurs in higher vertebrates. The in vivo results support the use of a multibiomarker approach when assessing the disturbances due to chemical exposures, not only spatially but also over time, once the influence of other variables has been taken into consideration. The in vitro results highlight the importance of the CYP3A4 and CbE pathway in pharmaceutical metabolism, also in fish.
اظهر المزيد [+] اقل [-]Humic acids enhance the microbially mediated release of sedimentary ferrous iron النص الكامل
2016
Chang, Chun-Han | Wei, Chia-Cheng | Lin, Li-Hung | Tu, Tzu-Hsuan | Liao, Vivian Hsiu-Chuan
Iron (Fe) is an essential element for many organisms, but high concentrations of iron can be toxic. The complex relation between iron, arsenic (As), bacteria, and organic matter in sediments and groundwater is still an issue of environmental concern. The present study addresses the effects of humic acids and microorganisms on the mobilization of iron in sediments from an arsenic-affected area, and the microbial diversity was analyzed. The results showed that the addition of 50, 100, and 500 mg/L humic acids enhanced ferrous iron (Fe(II)) release in a time-dependent and dose-dependent fashion under anaerobic conditions. A significant increase in the soluble Fe(II) concentrations occurred in the aqueous phases of the samples during the first 2 weeks, and aqueous Fe(II) reached its maximum concentrations after 8 weeks at the following Fe(II) concentrations: 28.95 ± 1.16 mg/L (original non-sterilized sediments), 32.50 ± 0.71 mg/L (50 mg/L humic acid-amended, non-sterilized sediments), 37.50 ± 1.85 mg/L (100 mg/L humic acid-amended, non-sterilized sediments), and 39.00 ± 0.43 mg/L (500 mg/L humic acid-amended, non-sterilized sediments). These results suggest that humic acids can further enhance the microbially mediated release of sedimentary iron under anaerobic conditions. By contrast, very insignificant amounts of iron release were observed from sterilized sediments (the abiotic controls), even with the supplementation of humic acids under anaerobic incubation. In addition, the As(III) release was increased from 50 ± 10 μg/L (original non-sterilized sediments) to 110 ± 45 μg/L (100 mg/L humic acid-amended, non-sterilized sediments) after 8 weeks of anaerobic incubation. Furthermore, a microbial community analysis indicated that the predominant class was changed from Alphaproteobacteria to Deltaproteobacteria, and clearly increased populations of Geobacter sp., Paludibacter sp., and Methylophaga sp. were found after adding humic acids along with the increased release of iron and arsenic. Our findings provide evidence that humic acids can enhance the microbially mediated release of sedimentary ferrous iron in an arsenic-affected area. It is thus suggested that the control of anthropogenic humic acid use and entry into the environment is important for preventing the subsequent iron contamination in groundwater.
اظهر المزيد [+] اقل [-]