خيارات البحث
النتائج 371 - 380 من 8,010
Estimation of commercial cooking emissions in real-world operation: Particulate and gaseous emission factors, activity influencing and modelling النص الكامل
2021
Lin, Pengchuan | Gao, Jian | He, Wanqing | Nie, Lei | Schauer, James J. | Yang, Shujian | Xu, Yisheng | Zhang, Yuanxun
Measurements of real-world cooking emission factors (CEFs) were rarely reported in recent year's studies. However, the needs for accurately estimating CEFs to produce cooking emission inventories and further implement controlling measures are urgent. In this study, we collected cooking emission aerosols from real-world commercial location operations in Beijing, China. 2 particulate (PM₂.₅, OC) and 2 gaseous (NMHC, OVOCs) CEF species were examined on influencing activity conditions of cuisine type, controlling technology, operation scales (represented by cook stove numbers), air exhausting volume, as well as location and operation period. Measured NMHC emission factors (Non-barbecue: 8.19 ± 9.06 g/h and Barbecue: 35.48 ± 11.98 g/h) were about 2 times higher than PM₂.₅ emission factors (Non-barbecue: 4.88 ± 3.43 g/h and Barbecue: 15.48 ± 7.22 g/h). T-test analysis results showed a significantly higher barbecued type CEFs than non-barbecued cuisines for both particulate and gaseous emission factor species. The efficacy of controlling technology was showing an average of 50 % in decreasing PM₂.₅ CEFs while a 50 % in increasing OC particulate CEFs. The effects of controlling equipment were not significant in removing NMHC and OVOCs exhaust concentrations. CEF variations within cook stove numbers and air exhausting volume also reflected a comprehensive effect of operation scale, cuisine type and control technology. The simulations among activity influencing factors and CEFs were further determined and estimated using hierarchical multiple regression model. The R square of this simulated model for PM₂.₅ CEFs was 0.80 (6.17 × 10–⁹) with standardized regression coefficient of cuisine type, location, sampling period, control technology, cook stove number (N) and N² of 5.18 (0.02), 5.33 (0.02), 1.93 (0.19), 9.29 (4.18 × 10–⁶), 9.10 (1.71 × 10–³) and −1.18 (2.43 × 10–³), respectively. In perspective, our study provides ways of better estimating CEFs in real operation conditions and potentially highlighting much more importance of cooking emissions on air quality and human health.
اظهر المزيد [+] اقل [-]Enrichment differences and source apportionment of nutrients, stable isotopes, and trace metal elements in sediments of complex and fragmented wetland systems النص الكامل
2021
Ji, Zehua | Long, Ziwei | Zhang, Yu | Wang, Youke | Qi, Xinyu | Xia, Xinghui | Pei, Yuansheng
Anthropogenic activities significantly influence the lake environment and are reflected by the element contents in sediments/soils. The lake fragmentation provides a unique opportunity for comparing the influences of natural/anthropogenic activities of different wetlands systems. In this study, a complex and fragmented lake was investigated, and sediment/soil samples were collected from different systems. The nutrient contents (C, N, and P), stable isotopic compositions (δ¹³C and δ¹⁵N), and trace metal contents (As, Cd, Cr, Cu, Ni, Pb, and Zn) in the sediments/soils were measured to determine the natural and anthropogenic influences and pollution sources. Lake fragmentation was caused by insufficient water input and long-term agricultural and aquacultural activities of local residents. Due to the effect of anthropogenic activities, the enrichment conditions of various elements differed significantly for different wetland systems. Industrial, agricultural, and biological sources significantly influenced the element enrichment in different systems. The results demonstrated that the anthropogenic activities significantly influenced the sediments/soils in wetland systems, and the lake fragmentation reduced the diffusion of the contaminants. These results provide accurate reference information for pollution control, lake management, and ecological restoration.
اظهر المزيد [+] اقل [-]Differential bioaccumulations and ecotoxicological impacts of metal-oxide nanoparticles, bulk materials, and metal-ions in cucumbers grown in sandy clay loam soil النص الكامل
2021
Ahmed, Bilal | Rizvi, Asfa | Syed, Asad | Jailani, Afreen | Elgorban, Abdallah M. | Khan, Mohammad Saghir | AL-Shwaiman, Hind A. | Lee, Jintae
Expanding applications of metal-oxide nanoparticles (NPs) and increased environmental deposition of NPs followed by their interactions with edible crops threaten yields. This study demonstrates the effects of aging (45 days in soil) of four NPs (ZnO, CuO, Al₂O₃, TiO₂; 3.9–34 nm) and their corresponding metal oxide bulk particles (BPs; 144–586 nm) on cucumbers (Cucumis sativus L.) cultivated in sandy-clay-loam field soil and compares these with the phytotoxic effects of readily soluble metal salts (Zn²⁺, Cu²⁺, and Al³⁺). Data revealed the cell-to-cell translocations of NPs, their attachments to outer and inner cell surfaces, nuclear membranes, and vacuoles, and their upward movements to aerial parts. Metal bioaccumulations in cucumbers were found in the order: (i) ZnO-NPs > ZnO-BPs > Zn²⁺, (ii) CuO-NPs > CuO-BPs > Cu²⁺, (iii) Al³⁺> Al₂O₃-NPs > Al₂O₃-BPs and (iv) TiO₂-NPs > TiO₂-BPs. Aging of NPs in soil for 45 days significantly enhanced metal uptake (P ≤ 0.05), for instance aged ZnO-NPs at 1 g kg⁻¹ increased the uptake by 20.7 % over non-aged ZnO-NPs. Metal uptakes inhibited root (RDW) and shoot (SDW) dry weight accumulations. For Cu species, maximum negative impact (%) was exhibited by Cu²⁺ (RDW:SDW = 94:65) followed by CuO-NPs (RDW:SDW = 78:34) and CuO-BPs (RDW:SDW = 27:22). Aging of NPs/BPs at 1–4 g kg⁻¹ further enhanced the toxic impact of tested materials on biomass accumulations and chlorophyll formation. NPs also induced membrane damage of root tissues and enhanced levels of antioxidant enzymes. The results of this study suggest that care is required when aged metal-oxide NPs of both essential (Zn and Cu) and non-essential (Al and Ti) metals interact with cucumber plants, especially, when they are used for agricultural purposes.
اظهر المزيد [+] اقل [-]Testosterone amendment alters metabolite profiles of the soil microbial community النص الكامل
2021
Steroid hormones are prevalent in the environment and have become emerging pollutants, but little is known about their effects on soil microbial community composition and function. In the present study, three representative soils in China were amended with environmentally relevant concentrations of testosterone and responses of soil bacterial community composition and soil function were assessed using high-throughput sequencing and nontargeted metabolomics. Our results showed that testosterone exposure significantly shifted bacterial community structure and metabolic profiles in soils at Ningbo (NB) and Kunming (KM), which may reflect high bioavailability of the hormone. Abundances of several bacterial taxa associated with nutrient cycling were reduced by testosterone and metabolites related to amino acid metabolism were downregulated. A close connection between bacterial taxa and specific metabolites was observed and confirmed by Procrustes tests and a co-occurrence network. These results provide an insight into the effects of steroid hormones on soil microbial community and highlight that nontargeted metabolomics is an effective tool for investigating the impacts of pollutants.
اظهر المزيد [+] اقل [-]Effects of nano metal oxide particles on activated sludge system: Stress and performance recovery mechanism النص الكامل
2021
Wang, Xingang | Han, Ting | Sun, Yang | Geng, Hongya | Li, Bing | Dai, Hongliang
Nano metal oxide particles (NMOPs) are widely used in daily life because of their superior performance, and inevitably enter the sewage treatment system. Pollutants in sewage are adsorbed and degraded in wastewater treatment plants (WWTPs) depending on the microbial aggregates of activated sludge system to achieve sewage purification. NMOPs may cause ecotoxicity to the microbial community and metabolism due to their complex chemical behavior, resulting in a potential threat to the safe and steady operation of activated sludge system. It is of great significance to clarify the influencing mechanism of NMOPs on activated sludge system and reduce the risk of WWTPs. Herein, we first introduce the physicochemical behavior of six typical engineering NMOPs including ZnO, TiO₂, CuO, CeO₂, MgO, and MnO₂ in water environment, then highlight the principal mechanisms of NMOPs for activated sludge system. In particular, the performance recovery mechanisms of activated sludge systems in the presence of NMOPs and their future development trends are well documented and discussed extensively. This review can provide a theoretical guidance and technical support for predicting and evaluating the potential threat of NMOPs on activated sludge systems, and promoting the establishment of effective control strategies and performance recovery measures of biological wastewater treatment process under the stress of NMOPs.
اظهر المزيد [+] اقل [-]Composition of a gas and ash mixture formed during the pyrolysis and combustion of coal-water slurries containing petrochemicals النص الكامل
2021
Dorokhov, V.V. | Kuznetsov, G.V. | Nyashina, G.S. | Strizhak, P.A.
This paper presents the results of experimental research into the component composition of gases and ash residue from the combustion of a set of high-potential coal-water slurries containing petrochemicals. We have established that the use of slurry fuels provides a decrease in the CO₂, CH₄, SO₂, and NOₓ concentrations as compared to those from coal combustion. The content of carbon monoxide and hydrogen in the gas environment from the combustion of slurries is higher due to the intense water evaporation. It is shown that adding biomass allows a further 5–33% reduction in the emissions of nitrogen and sulfur oxides as compared to the coal-water slurry and the composition with added waste turbine oil and a 23–68% decrease as compared to coal (per unit mass of the fuel burnt). The mechanisms and stages of CO₂, SO₂, and NOₓ formation are explained with a view to controlling gaseous anthropogenic emissions and ash buildup. The values of the relative environmental performance indicator are calculated for slurry fuels. It is shown to exceed the same indicator of bituminous coal by 28–56%.
اظهر المزيد [+] اقل [-]Salinity enrichment, sources and its contribution to elevated groundwater arsenic and fluoride levels in Rachna Doab, Punjab Pakistan: Stable isotope (δ2H and δ18O) approach as an evidence النص الكامل
2021
Parvaiz, Ambreen | Khattak, Junaid Ali | Hussain, Ishteaqe | Masood, Noshin | Javed, Tariq | Farooqi, Abida
The present study aimed at exploring the sources of salinity and the link it shares with the enrichment of As (arsenic) and F- (fluoride) in the groundwater of Rachna Doab. Total Dissolved Solids (TDS) were used as the measure of salinity to classify samples into three groups: TDS <1000 mg/L (freshwater), 1000–3000 mg/L (slightly saline) and 3000–10,000 mg/L (moderately saline). The stable isotope analysis (δ²H and δ¹⁸O relative to VSMOW) were used to explore the sources of salinity and a conceptual model, based on secondary data was used for comparing the current and past scenarios of groundwater salinization sources. Groundwater ion chemistry and geochemical modeling (PHREEQC) were used to develop a link between the occurrence of salinity and enrichment patterns of As and F- in the groundwater of study area. TDS, As and F- concentrations in groundwater ranged from 234 to 4557 mg/L, below detection limit to 240 μg/L and below detection limit to 3.9 mg/L, respectively. Mineral dissolution, ion exchange processes, and partial input of evaporation were identified as the factors affecting groundwater salinity in the region in accordance with the conceptual model developed based on secondary data. Groundwater salinity accounts as one of the factors that positively influence the enrichment of F- in groundwater, whereas As shows no clear relationship with saline groundwaters.
اظهر المزيد [+] اقل [-]Do dissipation and transformation of γ-HCH and p,p’-DDT in soil respond to a proxy for climate change? Insights from a field study on the eastern Tibetan Plateau النص الكامل
2021
Ding, Yang | Li, Li | Wania, Frank | Huang, Huanfang | Zhang, Yuan | Peng, Bo | Chen, Yingjie | Qi, Shihua
While the influence of climate change on the fate of persistent organic pollutants (POPs) is becoming a topic of global concern, it has yet to be demonstrated how POPs and their transformation products in soil respond to a changing climate at the local scale. We conducted a year-long field experiment with spiked soils to investigate the impact of climate on the dissipation of γ-hexachlorocyclohexane (γ-HCH) and p,p’-dichlorodiphenyltrichloroethane (p,p’-DDT) as well as the formation of their products. Four sites along an elevational gradient on the eastern Tibetan Plateau were selected to represent four scenarios ranging from a dry and cold to a warm and humid climate. Based on the measured concentrations of the two pesticides and their transformation products, we calculated the dissipation rates of γ-HCH and p,p’-DDT in soil using two biphasic kinetic models, and the formation rates of transformation products using a mid-point rectangular approximation method. The spiked γ-HCH generally showed the expected decrease in dissipation from soils with increasing altitudes, and therefore decreasing temperature and precipitation, whereas dissipation of p,p’-DDT was influenced more by photolysis and sequestration in soil. The formation rates of the primary products of γ-HCH (i.e. γ-HCH→PeCCH and γ-HCH→TeCCH) and p,p’-DDT (i.e. p,p’-DDT→p,p’-DDE and p,p’-DDT→p,p’-DDD) indicate that a warmer and wetter climate favors dechloroelimination (anaerobic biodegradation) over dehydrochlorination (aerobic biodegradation). The significantly longer dissipation half-lives of γ-HCH at the coldest site suggests that the fate of POPs in frozen regions (e.g. polar regions) needs more attention. Overall, the fate of more volatile chemicals (e.g. γ-HCH) might be more responsive to the climate change.
اظهر المزيد [+] اقل [-]Links between air pollution and COVID-19 in England النص الكامل
2021
Travaglio, Marco | Yu, Yizhou | Popovic, Rebeka | Selley, Liza | Leal, Nuno Santos | Martins, Luis Miguel
In December 2019, a novel disease, coronavirus disease 19 (COVID-19), emerged in Wuhan, People’s Republic of China. COVID-19 is caused by a novel coronavirus (SARS-CoV-2) presumed to have jumped species from another mammal to humans. This virus has caused a rapidly spreading global pandemic. To date, over 300,000 cases of COVID-19 have been reported in England and over 40,000 patients have died. While progress has been achieved in managing this disease, the factors in addition to age that affect the severity and mortality of COVID-19 have not been clearly identified. Recent studies of COVID-19 in several countries identified links between air pollution and death rates. Here, we explored potential links between major fossil fuel-related air pollutants and SARS-CoV-2 mortality in England. We compared current SARS-CoV-2 cases and deaths from public databases to both regional and subregional air pollution data monitored at multiple sites across England. After controlling for population density, age and median income, we show positive relationships between air pollutant concentrations, particularly nitrogen oxides, and COVID-19 mortality and infectivity. Using detailed UK Biobank data, we further show that PM₂.₅ was a major contributor to COVID-19 cases in England, as an increase of 1 m³ in the long-term average of PM₂.₅ was associated with a 12% increase in COVID-19 cases. The relationship between air pollution and COVID-19 withstands variations in the temporal scale of assessments (single-year vs 5-year average) and remains significant after adjusting for socioeconomic, demographic and health-related variables. We conclude that a small increase in air pollution leads to a large increase in the COVID-19 infectivity and mortality rate in England. This study provides a framework to guide both health and emissions policies in countries affected by this pandemic.
اظهر المزيد [+] اقل [-]Significant changes in autumn and winter aerosol composition and sources in Beijing from 2012 to 2018: Effects of clean air actions النص الكامل
2021
Li, Jiayun | Gao, Wenkang | Cao, Liming | Xiao, Yao | Zhang, Yangmei | Zhao, Shuman | Liu, Zan | Liu, Zirui | Tang, Guiqian | Ji, Dongsheng | Hu, Bo | Song, Tao | He, Lingyan | Hu, Min | Wang, Yuesi
A seven-year long-term comprehensive measurement of non-refractory submicron particles (NR-PM₁) in autumn and winter in Beijing from 2012 to 2018 was conducted to evaluate the effectiveness of the clean air actions implemented by the Chinese government in September 2013 on aerosols from different sources and chemical processes. Results showed that the NR-PM₁ concentrations decreased by 44.1% in autumn and 73.2% in winter from 2012 to 2018. Sulfate showed a much larger reduction than nitrate and ammonium in both autumn (55%) and winter (86%) and that nitrate even slightly increased by 15.8% in autumn. As a result, aerosol pollution in winter gradually changed from sulfate-rich to nitrate-rich with a sudden change after 2016 and the dominant role of nitrate in autumn was also strengthened after 2016. Among primary organic aerosol (OA) types, biomass burning OA and coal combustion OA exhibited the largest decline in autumn and winter, with reductions of 87.5% and 77.3%, respectively, while hydrocarbon-like OA (HOA) exhibited the smallest decline in both autumn (24.4%) and winter (37.1%). These significant changes in aerosol compositions were highly consistent with the much faster reduction of SO₂ (75–85%) than NOx (36–59%) and were mainly due to the clean air actions rather than the impact of meteorological conditions. What’s more, the enhanced atmospheric oxidizing capacity, which was indicated by increased O₃, altered the chemical processes of oxygenated OA (OOA), especially in autumn. Both of less-oxidized OOA (LO-OOA) and more-oxidized OOA showed elevated contributions in OA by 4% in autumn. The increased oxygen-to-carbon ratios of LO-OOA in autumn (from 0.42 to 0.58) and winter (from 0.44 to 0.52) indicated the enhanced atmospheric oxidizing capacity strengthened photochemical reactions and resulted in the increased oxidation degree of LO-OOA. This study demonstrates the effectiveness of the clean air actions for air quality improvement in Beijing.
اظهر المزيد [+] اقل [-]