خيارات البحث
النتائج 3721 - 3730 من 62,595
Ni accumulation and effects on a representative Cnidaria - Exaiptasia pallida during single element exposure and in combination with Mn النص الكامل
2022
Iyagbaye, Louis | Reichelt-Brushett, Amanda | Benkendorff, Kirsten
Nickel (Ni) and manganese (Mn) are well known for the production of steel and alloys and are commonly found co-occurring in Ni ores. They are metals of environmental concern and contamination in the marine environment is problematic single exposures and in combination. Several studies have documented the effects of single metal exposure on the model anemone E. pallida, but research on the effects of metal mixtures is far less common. This novel study assesses the accumulation and stress effects of Ni and Mn over a 12-d exposure period. E. pallida were exposed in two separate experiments; Ni alone and Ni in combination with Mn, to assess accumulation, along with any effect on the density of symbionts and anemone tentacle length. Anemones were transferred to ambient seawater to assess depuration and recovery over 6 d. Anemone tissue accumulated Ni at a magnitude of five times higher in a mixture of 0.5 mg Ni/L with 2.5 mg Mn/L compared to the same concentration in a single Ni exposure experiment. In both experiments, Ni and Mn preferentially accumulated in the Symbiodinium spp. compared to the anemone tissue, but Ni depuration was more rapid in the mixture than Ni alone exposure. This study reveals a significant reduction in anemone Symbiodinium spp. density after exposure to Ni and Mn mixtures, but not with Ni exposure alone. A significant dose-dependent reduction in tentacle length was observed in anemones after 12 d of the Ni exposure both with and without Mn. The estimated sublethal concentration that causes tentacle retraction in 50% of test anemones (EC50) by Ni was 0.51 (0.25–0.73) mg/L, while in combination with Mn the EC50 was 0.30 mg Ni/L (confidence limits not calculatable). The present data reveals the importance of testing metal effects in combination before establishing safe limits for marine invertebrates.
اظهر المزيد [+] اقل [-]Soil toxic elements determination using integration of Sentinel-2 and Landsat-8 images: Effect of fusion techniques on model performance النص الكامل
2022
Khosravi, Vahid | Gholizadeh, Asa | Saberioon, Mohammadmehdi
Finding an appropriate satellite image as simultaneous as possible with the sampling time campaigns is challenging. Fusion can be considered as a method of integrating images and obtaining more pixels with higher spatial, spectral and temporal resolutions. This paper investigated the impact of Landsat 8-OLI and Sentinel-2A data fusion on prediction of several toxic elements at a mine waste dump. The 30 m spatial resolution Landsat 8-OLI bands were fused with the 10 m Sentinel-2A bands using various fusion techniques namely hue-saturation-value (HSV), Brovey, principal component analysis (PCA), Gram-Schmidt (GS), wavelet, and area-to-point regression kriging (ATPRK). ATPRK was the best method preserving both spectral and spatial features of Landsat 8-OLI and Sentinel-2A after fusion. Furthermore, the partial least squares regression (PLSR) model developed on genetic algorithm (GA)-selected laboratory visible-near infrared-shortwave infrared (VNIR–SWIR) spectra yielded more accurate prediction results compared to the PLSR model calibrated on the entire spectra. It was hence, applied to both individual sensors and their ATPRK-fused image. In case of the individual sensors, except for As, Sentinel-2A provided more robust prediction models than Landsat 8-OLI. However, the best performances were obtained using the fused images, highlighting the potential of data fusion to enhance the toxic elements’ prediction models.
اظهر المزيد [+] اقل [-]Direct injection green chromatographic method for simultaneous quantification of amoxicillin and amikacin in maternity hospital wastewater (Sagar, India) النص الكامل
2022
Sharma, Girraj | Pahade, Priyanka | Durgbanshi, Abhilasha | Carda-Broch, Samuel | Peris-Vicente, Juan | Bose, Devasish
Amoxicillin (AMO) and amikacin (AMK) are broad-spectrum antibiotics that are most preferably given post-delivery (normal and cesarian) in the maternity hospitals located in Sagar city (Madhya Pradesh), India. Both the antibiotics make their way through sewage/drainage systems into the environment in the form of metabolized and unmetabolized compounds. Growing concern about the contamination of wastewater by antibiotics requires fast, sensitive and eco-friendly techniques. Therefore a simple, rapid and environmental friendly chromatographic method has been developed for simultaneous determination of AMO and AMK in maternity hospital wastewater samples. A micellar liquid chromatographic (MLC) method was developed with a C₁₈ column (250 mm × 4.6 mm), sodium dodecyl sulphate (SDS; 0.15 M), 1-butanol (7%) as a modifier, pH 5 and photo diode detector (PDA) at 270 nm and 256 nm for AMO and AMK respectively. The method was fast with analysis time below 9 min. In the present MLC method, linearities (r > 0.998), limits of quantification in the range of 0.02–0.04 μg/mL, repeatabilities, and intermediate precision below 4.9% were adequate for the quantification of AMO and AMK. The proposed method can be utilized to detect and quantify both the antibiotics in various samples by hospitals, pharmaceutical companies, pollution control board, municipal corporations, etc.
اظهر المزيد [+] اقل [-]Legacy PAHs in effluent receiving river sediments near a large petroleum products depot in Enugu, Nigeria: Human health risks and economic cost of pollution النص الكامل
2022
Ugochukwu, Uzochukwu C. | Chukwuone, Nnaemeka Andegbe | Jidere, Chika | Agu, Chizoba | Kurumeh, Leonard | Ezeudu, Obiora Boniface
This study assessed the human health risk of exposure to legacy PAHs in the Nwaenebo River sediments that received effluents for over two decades from the Nigeria National Petroleum Corporation (NNPC) petroleum product Depot in Emene, Enugu, Nigeria. The study went further to estimate economic costs of the sediment PAHs pollution based on the human health risk of exposure. The human health risks were determined by estimating carcinogenic and mutagenic risks via Benzo[a]pyrene total potential equivalent (BaP TPE) and mutagenic equivalent quotient (MEQ). The economic costs of the sediment pollution comprised costs due to mortality and those due to morbidity and were estimated using the value of statistical lives (VSLs) and cost of illness (CoI), respectively. The study, with an appropriate selection of sampling points established that the NNPC petroleum Depot was responsible for the Nwaenebo River sediment PAHs pollution with ƩPAHs concentration 14.3–163 mg/kg. The carcinogenic and mutagenic risks varied from 1.3*10^-5 to 4.7*10^-5 and 1.4*10^-5 to 6.0*10^-5 respectively. Based on risk threshold of 10^-6, these risks were high. The long term economic costs of pollution of the sediments by the PAHs were estimated at 60.5 million USD and 0.46 million USD for mortality and morbidity costs, respectively.
اظهر المزيد [+] اقل [-]Spatio-temporal patterns of occurrence of microplastics in the freshwater fish Gambusia affinis from the Brantas River, Indonesia النص الكامل
2022
Buwono, Nanik Retno | Risjani, Yenny | Soegianto, Agoes
The first investigation of microplastics in G. affinis from the Brantas River was carried out in this study. Microplastics were found at higher concentrations in gambusia fish captured downstream (209.18 ± 48.85 particles/gram) than upstream (24.44 ± 0.14 particles/gram). Microplastic particle concentrations in G. affinis have a positive linear relationship with fish length. The fiber was the most prominent shape at Sites 1 and 2, whereas the fragment was dominant at Sites 3 and 4. With a value of 45–48%, black dominates the entire site, followed by blue (29–38%), transparent colors (7–11%), red (2–4%), purple (1–3%), and other colors (5–7%). Microplastics measuring <0.1 mm are commonly found in fish bodies. Cyclohexylmethyl octyl ester (phthalic acid) is the most abundant component found in microplastics, accounting for 30.11% of the total. This study provides evidence that G. affinis can be used to monitor the presence of microplastic pollution in the Brantas River but further studies are needed regarding the effects of microplastics and their health hazards on fish.
اظهر المزيد [+] اقل [-]Urinary bisphenol concentrations and its association with metabolic disorders in the US and Korean populations النص الكامل
2022
Choi, Ji Yoon | Lee, Jiyun | Huh, Da-An | Moon, Kyong Whan
Bisphenol A (BPA) is a representative endocrine disrupting compound used in a vast array of consumer products, and are being frequently substituted by its analogues, bisphenol S (BPS) and bisphenol F (BPF). We aimed to examine the association between urinary bisphenol levels with obesity and lipid profiles in the general population to comprehensively evaluate its potential of metabolic disturbance. A representative sample of 1046 US adults from the National Health and Nutrition Examination Survey (2013–2016) and 3268 Korean adults from the Korean National Environmental Health Survey (2015–2017) was analyzed. We examined the exposure levels of bisphenols and determined their associations with obesity, high-density lipoprotein cholesterol (HDL-C) and triglyceride (TG) levels, and hypercholesterolemia prevalence through multiple linear, and binary/ordinal logistic regression models. In both populations, high BPA levels (lowest tertile vs. 2nd, 3rd tertiles) showed corresponding associations with lipid profile and obesity. BPA levels were associated with decreased HDL-C levels (Q3: β = −0.053, p = 0.08 (US); Q2: β = −0.030, p-0.03), increased TG levels (Q3: β = 0.121, p = 0.029 (US); Q3: β = 0.089, p = 0.021, and higher odds for obesity (Q3: OR = 1.58, 95% CI: 1.06, 2.35 (US); Q3: OR = 1.41, 95% CI: 1.11, 1.78). Higher BPS levels were positively associated with obesity status, especially in US men (Q2: OR = 1.84, 95% CI: 1.15, 2.96) and Korean women (Q3: OR = 1.27, 95% CI: 0.99, 1.64). A significant decrease in HDL-C (Q3: β = −0.088, p = 0.01) and elevated odds for obesity at higher BPF levels (Q3: OR = 1.60, 95% CI: 1.00, 2.56) was observed in US women. The findings of our study indicate that BPA and its analogues, BPS and BPF, are associated with lipid metabolism disorders in addition to obesity in adults. Given the increase in exposure to BPA alternatives, continuous biomonitoring, and further investigation of their health effects through prospective cohort studies are warranted.
اظهر المزيد [+] اقل [-]Antimony and arsenic particle size distribution in a mining contaminated freshwater river: Implications for sediment quality assessment and quantifying dispersion النص الكامل
2022
Doherty, Steven | Rueegsegger, Isabelle | Tighe, Matthew K. | Milan, Luke A. | Wilson, Susan C.
Assessments of antimony (Sb) and arsenic (As) contamination in sediments are reported on a wide range of different particle size fractions, including <63 μm, < 180 μm and <2 mm. Guidelines vary between jurisdictions which limits comparative assessment between contamination events and complicates ecotoxicity assessment, and almost no information exists on Sb size distribution in contaminated sediments. This study quantified and compared the size distribution of Sb and As in 11 sediments (and 2 floodplain soils) collected along 320 km of waterway contaminated by historic mining activity. Sediment particle size distribution was the primary determinant of total metalloid load in size fractions across the varying substrates of the waterway. Minerals and sorption complexes influenced metalloid particle distribution but relative importance depended on location. Arsenic concentrations were greatest in the fine <63 μm fraction across all the different river environments (7.3–189 mg kg⁻¹, or 1–26% of total sample As), attributed to fine-grained primary arsenopyrite and/or sorption of As(V) to fine solid-phases. The Sb particle size concentrations were greatest in mid-size fractions (205–903 mg kg⁻¹) in the upper catchment and up to 100 km downstream to the mid-catchment as a result of remnant Sb minerals. Antimony concentrations in the lower catchment were greatest in the <63 μm fraction (8.8–12.1 mg kg⁻¹), reflecting the increasing importance of sorption for Sb particle associations. This work demonstrates the importance of particle size analysed for assessment of sediment quality, and provides support for analysis of at least the <250 μm fraction for Sb and As when comparing pollutant distribution in events impacted by primary contamination. Analysis of the <63 μm fraction, however, provides good representation in well-dispersed contaminated sediments.
اظهر المزيد [+] اقل [-]Enhanced removal of ammonium from water using sulfonated reed waste biochar-A lab-scale investigation النص الكامل
2022
Zhang, Ming | Sun, Ruyi | Song, Ge | Wu, Lijun | Ye, Hui | Xu, Liheng | Parikh, Sanjai J. | Nguyễn, Tuấn | Khan, Eakalak | Vithanage, Meththika | Ok, Yong Sik
The removal of excessive ammonium from water is vital for preventing eutrophication of surface water and ensuring drinking water safety. Several studies have explored the use of biochar for removing ammonium from water. However, the efficacy of pristine biochar is generally weak, and various biochar modification approaches have been proposed to enhance adsorption capacity. In this study, biochar obtained from giant reed stalks (300, 500, 700 °C) was modified by sulfonation, and the ammonium adsorption capabilities of both giant reed biochars (RBCs) and sulfonated reed biochars (SRBCs) were assessed. The ammonium adsorption rates of SRBCs were much faster than RBCs, with equilibrium times of ∼2 h and ∼8 h for SRBCs and RBCs, respectively. The Langmuir maximum adsorption capacities of SRBCs were 4.20–5.19 mg N/g for SRBCs, significantly greater than RBCs (1.09–1.92 mg N/g). Physical-chemical characterization methods confirmed the increased levels of carboxylic and sulfonic groups on sulfonated biochar. The reaction of ammonium with these O-containing functional groups was the primary mechanism for the enhancement of ammonium adsorption by SRBCs. To conclude, sulfonation significantly improved the adsorption performance of biochar, suggesting its potential application for ammonium mitigation in water.
اظهر المزيد [+] اقل [-]Effects of natural organic matter on the joint toxicity and accumulation of Cu nanoparticles and ZnO nanoparticles in Daphnia magna النص الكامل
2022
Yu, Qi | Wang, Zhuang | Wang, Guiyin | Peijnenburg, Willie J.G.M. | Vijver, Martina G.
Various modern products have metallic nanoparticles (MNPs) embedded to enhance products performance. Technological advances enable nowadays even multiple hybrid nanoparticles. Consequently, the future co-release of multiple MNPs will inevitably result in the presence of MNP mixtures in the environment. An important question is if the responses of mixtures of MNPs can be dealt with in a similar way as with the responses of biota to mixtures of metal salts. Moreover, natural organic matter (NOM) is an important parameter affecting the behavior and effect of MNPs. Herein, we determined the joint toxicity and accumulation of copper nanoparticles (CuNPs) and zinc oxide nanoparticles (ZnONPs) in Daphnia magna in the absence and presence of Suwannee River natural organic matter (SR-NOM), compared to the joint toxicity and accumulation of corresponding metal salts. The results of toxicity testing showed that the joint toxicity of CuNPs + ZnONPs was greater than the single toxicity of CuNPs or ZnONPs. The joint toxic action of CuNPs + ZnONPs was additive or more-than-additive for D. magna. A similar pattern was found in the toxicity of the mixtures of Cu- and Zn-salts from the literature data. The presence of SR-NOM had no significant impact on the joint toxicity of CuNPs + ZnONPs. The calculated component-specific contribution to overall toxicity indicated that SR-NOM increased the relative contribution of dissolved ions released from the MNPs to the toxicity of the binary mixtures at high-effect concentrations of individual MNPs. Moreover, dissolved Zn-ions released from the ZnONPs were found to dominate the joint toxicity of CuNPs + ZnONPs in the presence of SR-NOM. Furthermore, the results of the accumulation experiment displayed that the presence of SR-NOM significantly enhanced the accumulation of either CuNPs or ZnONPs in D. magna exposed to the MNP mixtures.
اظهر المزيد [+] اقل [-]Chronic di(2-ethylhexyl) phthalate exposure leads to dopaminergic neuron degeneration through mitochondrial dysfunction in C. elegans النص الكامل
2022
Huang, Meilun | Yen, Pei-Ling | Chang, Chun-Han | Liao, Vivian Hsiu-Chuan
The plasticizer di(2-ethylhexyl) phthalate (DEHP) is frequently detected in the environment due to the abundance of its use. These levels might be hazardous to human health and ecosystems. Phthalates have been associated with neurological disorders, yet whether chronic DEHP exposure plays a role in Parkinson's disease (PD) or its underlying mechanisms is unknown. We investigated the effects of chronic DEHP exposure less than an environmentally-relevant dose on PD hallmarks, using Caenorhabditis elegans as a model. We show that developmental stage and exposure timing influence DEHP-induced dopaminergic neuron degeneration. In addition, in response to chronic DEHP exposure at 5 mg/L, mitochondrial fragmentation became significantly elevated, reactive oxygen species (ROS) levels increased, and ATP levels decreased, suggesting that mitochondrial dysfunction occurs. Furthermore, the data show that mitochondrial complex I (nuo-1 and gas-1) and complex II (mev-1) are involved in DEHP-induced dopaminergic neuron toxicity. These results suggest that chronic exposure to DEHP at levels less than an environmentally-relevant dose causes dopaminergic neuron degeneration through mitochondrial dysfunction involving mitochondrial complex I and II. Considering the high level of genetic conservation between C. elegans and mammals, chronic DEHP exposure might elevate the risk of developing PD in humans.
اظهر المزيد [+] اقل [-]