خيارات البحث
النتائج 381 - 390 من 4,922
Response of benthic macrofauna to multiple anthropogenic pressures in the shallow coastal zone south of Sfax (Tunisia, central Mediterranean Sea)
2019
Mosbahi, Nawfel | Serbaji, Mohamed Moncef | Pezy, Jean-Philippe | Neifar, Lassad | Dauvin, Jean-Claude
Anthropogenic activities including coastal industries, urbanization, extensive agriculture and aquaculture as well as their cumulative impacts represent major sources of perturbation of marine coastal systems. Macrobenthic communities are useful ecological indicators for monitoring the health status of marine environments (or polluted environments). The present study reports, for the first time, the response of benthic macrofauna sampled during two years survey (2015–2016) to multiple anthropogenic pressures on the coastal zone south of Sfax (Tunisia). A total of 12 stations were monitored seasonally at locations downstream from the main potential sources of disturbance. 106 macrobenthos taxa, belonging to six animal phyla and 70 families, were identified with a dominance of polychaetes (42%), crustaceans (35%) and molluscs (18%). We used an ANOVA test and cluster analysis to identify spatial gradient linked to environmental and anthropogenic factors, including depth, sedimentary texture and anthropogenic activities (i.e. phosphogypsum discharges).The macrofauna present lowest species number and abundance on stations undergoing anthropogenic inputs, which are extremely polluted by heavy metals (Cd, Cu, F and N) and excess of organic matter. Univariate parameters reveal a general trend of increasing species diversity with increasing distance from the pollution source. The polluted stations are strongly dominated by carnivores, and selective deposit feeders, and more closely linked to the availability of trophic resources than to anthropogenic constraints. The seasonal changes in macrobenthic abundance, diversity indices and community structure are mainly linked to the biological cycle (e.g. recruitment events) of the dominant species. Biotic indices (AMBI and BO2A) classified the coastal zone south of Sfax as moderate and good ecological status. This study suggests that initiating a long-term monitoring programme would improve our understanding of the temporal changes of macrobenthic communities of this ecosystem, contributing to the assessment of effective management and conservation measures in this disturbed area.
اظهر المزيد [+] اقل [-]Locating and quantifying multiple landfills methane emissions using aircraft data
2019
Gasbarra, D. | Toscano, P. | Famulari, D. | Finardi, S. | Di Tommasi, P. | Zaldei, A. | Carlucci, P. | Magliulo, E. | Gioli, B.
A mass balance approach to quantify methane (CH4) emission of four co-located landfills by means of airborne measurements and dispersion modelling was proposed and assessed. By flying grids at different heights above the landfills, atmospheric CH4 densities and wind components were measured along the edges and inside the study atmospheric volume, in order to calculate mass flows in the along- and across-wind directions. A steady-state Gaussian dispersion model was applied to build the concentration fields associated to unit emission from each landfill, while the contribution of each one to the total emission was assessed using a General Linear Model approach, minimizing the difference between measured and modeled mass flows. Results showed that wind spatial and temporal variability is the main factor controlling the accuracy of the method, as a good agreement between measured and modeled mass flows was mainly found for flights made in steady wind conditions. CH4 emissions of the entire area ranged from 213.5 ± 33.5 to 317.9 ± 90.4 g s−1 with a mean value of 252.5 ± 54.2 g s−1. Contributions from individual sources varied from 17.5 to 40.1 g m−2 day−1 indicating a substantial heterogeneity of the different landfills, which differed in age and waste composition. The proposed method was validated against tower eddy covariance flux measurements made at one of the landfills, revealing an overall agreement within 20%.
اظهر المزيد [+] اقل [-]Effects of interactions between humic acid and heavy metal ions on the aggregation of TiO2 nanoparticles in water environment
2019
Wang, Dongxu | Wang, Peifang | Wang, Chao | Ao, Yanhui
Nanoparticles (NPs), heavy metal and natural organic matter (NOM) may simultaneously exist in the aquatic environment, where they will affect the behavior of each other and may enhance their toxicities. Studies on the influences of interactions between NOM and heavy metal ions on the behavior of NPs are scarce. In this study, combined effects of Pb²⁺ and HA on the aggregation behavior of TiO₂ NPs in water environment were investigated by Dynamic light scattering (DLS) and Nanoparticle tracking analysis (NTA). The results illustrated that interactions between Pb²⁺ and HA could case the aggregation of TiO₂ NPs obviously. The concurrence of Pb²⁺ and HA resulted in decreased critical coagulation concentration (CCC) and increased attachment efficiencies. Meanwhile, we found that the addition sequences of HA and heavy metal clearly influenced the aggregation kinetics of TiO₂ NPs. At different addition sequences, the complex reaction between Pb²⁺ and HA changed the surface charge of TiO₂ NPs, and caused the different aggregation behavior which depended on the complex locations and complex sites. Furthermore, the excitation-emission-matrix (EEM) fluorescence spectra was used to verify the significant effects of the complex interactions between Pb²⁺ and HA on the aggregation of TiO₂ NPs. Our results would be significant for interpreting TiO₂ behavior in the complicated water system.The complexation between Pb²⁺ and HA promoted the aggregation of TiO₂ NPs, meanwhile, complex locations and complex sites played an important role.
اظهر المزيد [+] اقل [-]Effects of ingested polystyrene microplastics on brine shrimp, Artemia parthenogenetica
2019
Wang, Ying | Zhang, Dian | Zhang, Mingxing | Mu, Jingli | Ding, Guanghui | Mao, Zheng | Cao, Yifei | Jin, Fei | Cong, Yi | Wang, Lijun | Zhang, Weiwei | Wang, Juying
Microplastics are a contaminant of emerging concern which enter the marine environment from a variety of sources. The ingestion and toxic effects of microplastics on marine life, especially for filter feeders, are a cause of concern in view of their ubiquitous nature and their similar size as food sources. To assess the toxic effects of microspheres ingested by brine shrimp larvae, we exposed Artemia parthenogenetica to 10 μm polystyrene microspheres at different concentrations. These concentrations were approximate to the extrapolated marine aquatic environmentally relevant concentrations. The lowest polystyrene concentrations at which ingestion was visualized in A. parthenogenetica were 12 ± 0.57 particles/mL (6.7 ± 0.32 μg/L) and 1.1 ± 0.16 particles/mL (0.61 ± 0.088 μg/L), respectively. There were no significant impacts on the survival, growth or development in A. parthenogenetica occurring over the 14-d exposure across a range of polystyrene nominal concentrations (1–1000 particles/mL or 0.55–550 μg/L). However, abnormal ultrastructures of intestinal epithelial cells were observed upon exposure to polystyrene microspheres, including fewer and disordered microvilli, an increased number of mitochondrion and the appearance of autophagosome. These phenomena could affect nutrition absorption and energy metabolism. Although no major acute or chronic toxicity effects on A. parthenogenetica were observed over 24-h or 14-d exposures, this study provides evidence that the ingestion of polystyrene microplastics at extrapolated environmentally relevant concentrations can be visualized through a microscope to be causing a series of responses in intestinal epithelial cells.
اظهر المزيد [+] اقل [-]Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations
2019
Zhou, Wei | Gao, Meng | He, Yao | Wang, Qingqing | Xie, Conghui | Xu, Weiqi | Zhao, Jian | Du, Wei | Qiu, Yanmei | Lei, Lu | Fu, Pingqing | Wang, Zifa | Worsnop, Douglas R. | Zhang, Qiang | Sun, Yele
Despite substantial mitigation of particulate matter (PM) pollution during the past decade in Beijing, the response of aerosol chemistry to clean air action and meteorology remains less understood. Here we characterized the changes in aerosol composition as responses to emission reductions by using two-year long-term measurements in 2011/2012 and 2017/2018, and WRF-Chem model. Our results showed substantial decreases for all aerosol species except nitrate from 2011/2012 to 2017/2018. Chloride exhibited the largest decrease by 65–89% followed by organics (37–70%), mainly due to reductions in coal combustion emissions in winter and agriculture burning in June. Primary and secondary organic aerosol (SOA) showed comparable decreases by 61–70% in fall and winter, and 34–63% in spring and summer, suggesting that reductions in primary emissions might also suppress SOA formation. The changes in nitrate were negligible and even showed increases due to less reductions in NOₓ emissions and increased formation potential from N₂O₅ heterogeneous reactions. As a result, nitrate exceeded sulfate and became the major secondary inorganic aerosol species in PM with the contribution increasing from 14–21% to 22–32%. Further analysis indicated that the reductions in aerosol species from 2011/2012 to 2017/2018 were mainly caused by the decreases of severely polluted events (PM₁ > 100 μg m⁻³). WRF-Chem simulations suggested that the decreases in OA and sulfate in fall and winter were mainly resulted from emission reductions (27–36% and 25–43%) and favorable meteorology (4–10% and 19–30%), while they were dominantly contributed by emission changes in spring and summer. Comparatively, the changes in nitrate were mainly associated with meteorological variations while the contributions of emissions changes were relatively small. Our results highlight different chemical responses of aerosol species to emission changes and meteorology, suggesting that future mitigation of air pollution in China needs species-targeted control policy.
اظهر المزيد [+] اقل [-]Composition and endocrine effects of water collected in the Kibale national park in Uganda
2019
Spirhanzlova, Petra | Fini, Jean-Baptiste | Demeneix, Barbara | Lardy-Fontan, Sophie | Vaslin-Reimann, Sophie | Lalere, Béatrice | Guma, Nelson | Tindall, Andrew | Krief, Sabrina
Pesticides are used worldwide with potential harmful effects on both fauna and flora. The Kibale National Park in Uganda, a site renowned for its biodiversity is surrounded by tea, banana and eucalyptus plantations as well as maize fields and small farms. We previously showed presence of pesticides with potential endocrine disruptive effects in the vicinity. To further investigate the water pollution linked to agricultural pressure in this protected area, we implemented a complementary monitoring strategy based on: analytical chemistry, effects based methods and the deployment of Polar Organic Chemical Integrative Samplers (POCIS). Chemical analysis of the POCIS extracts revealed the presence of 13 pesticides: carbofuran, DEET, 2.4-D amine, carbaryl, ametryn, isoproturon, metolachlor, terbutryn, dimethoate, imidacloprid, picaridin, thiamethoxam, carbendazim, with the first three being present in the largest quantities. Water samples collected at the POCIS sampling sites exhibited thyroid and estrogen axis disrupting activities in vivo, in addition to developmental and behaviour effects on Xenopus laevis tadpoles model. Based on our observations, for the health of local human and wildlife populations, further monitoring as well as actions to reduce agrochemical use should be considered in the Kibale National Park and in regions exposed to similar conditions.
اظهر المزيد [+] اقل [-]Zinc and lead encapsulated in amorphous ferric cements within hardpans in situ formed from sulfidic Cu-Pb-Zn tailings
2019
Liu, Yunjia | Wu, Songlin | Southam, Gordon | Nguyen, Tuan A.H. | Kopittke, Peter M. | Paterson, David J. | Huang, Longbin
Hardpans are massively indurated layers formed at the top layer of sulfidic tailings dams, which develop cementation structures and result in heavy metal immobilization. However, the micro-structural and complex forms of the cementing materials are not fully understood, as well as the mechanisms by which Zn and Pb are stabilized in the hardpans. The present study deployed synchrotron-based X-ray fluorescence microscopy (XFM) to have characterized the cementing structures, examined the distribution of Fe, Zn and Pb, and obtained laterally-resolved speciation of Zn within the hardpans using fluorescence X-ray absorption near-edge structure (XANES) imaging. The XFM analyses revealed that the Fe-rich cement layers consisted of Fe (oxyhydr)oxides coupled with amorphous Si materials, immobilizing Zn and Pb. Through laterally-resolved XANES imaging analyses, Zn-ferrihydrite-like precipitates were predicted to account for >76% of the total Zn within the Fe-rich cement layers. In contrast, outside of the cement layers, 9–63% of the Zn was estimated as labile ZnSO4.7H2O, with the remainder in the form of Zn-sulfide. These findings demonstrated that the Fe-rich cement layers were critical in immobilizing Zn and Pb within hardpans via mineral passivation and encapsulation, as the basis for long-term geochemical stability in the hardpan layer of sulfidic mine tailings.
اظهر المزيد [+] اقل [-]The interaction of mercury and methylmercury with chalcogenide nanoparticles
2019
Wang, Xudong | Seelen, Emily | Mazrui, Nashaat | Kerns, Peter | Suib, Steven L. | Zhao, Jing | Mason, Robert
Mercury (Hg) and methylmercury (CH3Hg) bind strongly to micro and nano (NP) particles and this partitioning impacts their fate and bioaccumulation into food webs, and, as a result, potential human exposure. This partitioning has been shown to influence the bioavailability of inorganic Hg to methylating bacteria, with NP-bound Hg being more bioavailable than particulate HgS, or organic particulate-bound Hg. In this study we set out to investigate whether the potential interactions between dissolved ionic Hg (HgII) and CH3Hg and NPs was due to incorporation of Hg into the core of the cadmium selenide and sulfide (CdSe; CdS) nanoparticles (metal exchange or surface precipitation), or due purely to surface interactions. The interaction was assessed based on the quenching of the fluorescence intensity and lifetime observed during HgII or CH3Hg titration experiments of these NP solutions. Additional analysis using inductively coupled plasma mass spectrometry of CdSe NPs and the separated solution, obtained after HgII additions, showed that there was no metal exchange, and X-ray photoelectron spectroscopy confirmed this and further indicated that the Hg was bound to cysteine, the NP capping agent. Our study suggests that Hg and CH3Hg adsorbed to the surfaces of NPs would have different bioavailability for release into water or to (de)methylating organisms or for bioaccumulation, and provides insights into the behavior of Hg in the environment in the presence of natural or manufactured NPs.
اظهر المزيد [+] اقل [-]Application of sodium titanate nanofibers as constructed wetland fillers for efficient removal of heavy metal ions from wastewater
2019
Zhao, Min | Wang, Sen | Wang, Hongsheng | Qin, Peirui | Yang, Dongjiang | Sun, Yuanyuan | Kong, Fanlong
Constructed wetlands are an environmentally friendly and economically efficient sewage treatment technology, with fillers playing an important role in treatment processes. However, traditional wetland fillers (e.g. zeolite) are known to be imperfect because of their low adsorption capacity. In this paper, the adsorbent sodium titanate nano fillers (T3-F) was synthesized as an alternative to traditional filler with sodium titanate nanofibers (T3) as the raw material, epoxy adhesive as the adhesive agent and NH₄HCO₃ as the pore-making agent. The properties of T3-F were characterized by powder X-ray diffraction (XRD), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), porosity. The effect of different parameters such as pH, co-existing ions, contact time, initial metal ion concentrations and temperature was investigated for heavy metal adsorption. The results showed that the adsorption of heavy metal by T3-F followed the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption capacities for Cu²⁺, Pb²⁺, Zn²⁺, Cd²⁺ were about 1.5–1.98 mmol/g, which were 4–5 times that of zeolite, the traditional commonly used filler. Moreover, T3-F could entrap toxic ions irreversibly and maintain structural stability in the adsorption process, which solved the issue of secondary pollution. In the presence of competing ions, the adsorption efficiency for Pb²⁺ was not reduced significantly. Adsorption was strongest at high pH. From the results and characterization, an adsorption mechanism was suggested. This study lays a foundation for the practical application of T3-F as a constructed wetland filler in the future.
اظهر المزيد [+] اقل [-]Multi-factor identification and modelling analyses for managing large river algal blooms
2019
Xia, Rui | Zhang, Yuan | Wang, Gangsheng | Zhang, Yongyong | Dou, Ming | Hou, Xikang | Qiao, Yunfeng | Wang, Qiang | Yang, Zhongwen
River algal blooms have become a newly emerging global environmental issue in recent decades. Compared with water eutrophication in lakes and reservoirs, algal blooms in large river systems can cause more severe consequences to watershed ecosystems at the watershed scale. However, reveal the causes of river algal blooms remains challenging in the interdisciplinary of hydrological-ecological-environmental research, due to its complex interaction mechanisms impacted by multiple factors. In addition, there were still considerable uncertainties on the characteristics, impacts, driving factors, as well as the applicable water system models for river algal blooms. In this paper, we reviewed existing literature to elaborate the definition and negative effects of river algal blooms. We analyzed sensitive factors including nutrient, hydrological and climatic elements. We also discussed the application of ecohydrological models under complicated hydrological conditions. Finally, we explored the essence of the river algal bloom by the interaction effects of physical and biogeochemical process impacted by of climate change and human activities. The model-data integration accounting for multi-factor effects was expected to provide scientific guidance for the prevent and control of algal blooms in large river systems.
اظهر المزيد [+] اقل [-]