خيارات البحث
النتائج 41 - 50 من 562
Feasibility of Production of PET/ZIF-8 Polymer Media to Remove Particles from the Air Stream Compared to HEPA Filter
2023
Kazemi, Meghdad | Kalantary, Saba | Abbasi, Ali Reza | Rahimi Foroushani, Abbas | Golbabaei, Farideh
Polyethylene terephthalate (PET) and Zeolitic Imidazolate Framework-8 (ZIF-8) were used to investigate the feasibility of producing electrospun PET/ZIF-8 polymer media in removing particles from the air stream to compare with the HEPA filter. To make PET/ZIF-8 media, concentrations of 0.5, 1, 2.5, and 5 wt.% of ZIF-8 were dissolved in PET20% solutions, and dispersed for 10 min. Then, PET/ZIF-8 media was produced with an ESDP30 model electrospinning device. The efficiency and pressure drop of nanofiber media were measured with a respiratory mask and filter test device. The FTIR, XRD and SEM analysis were carried out to obtain the characteristics of nanofibers. The overall XRD pattern and its peaks were in reasonable agreement with previous findings that confirmed the structure of ZIF-8. The FTIR spectra of the obtained materials confirm that the chemical bond structure corresponds to that reported for ZIF-8. In total, The PET/ZIF-8(1%) media efficiency, pressure drop, the average diameter of nanofibers, and the quality factor were 100%, 320 Pa, 171.18±37.91 nm and 0.0143 Pa-1, respectively, which was better than other electrospun PET/ZIF-8 media and HEPA filters. According to the results, with an increase in the weight percentage of Zif-8 (>5 wt.%) in the structure of PET/Zif-8 media, due to the increase in the viscosity of the solution jet, the diameter of the produced nanofibers increased and the efficiency of the electrospinning medium decreased.
اظهر المزيد [+] اقل [-]Catalytic Conversion of Carbon Dioxide by Metal-Organic Frameworks: an Effective Approach for CO2 Utilization
2023
Tayebi, Leila | Rahimi, Rahmatollah | Akbarzadeh, Ali Reza
Due to the increase in carbon dioxide emission, there is a need for achieving efficient ways to reduce CO2 harmful effects. There are several strategies to mitigate atmospheric CO2 concentration. The catalytic cycloaddition of carbon dioxide with epoxides to provide cyclic carbonates employing metal-organic frameworks is a promising method for this purpose. Herein the application of two porous porphyrinic MOFs (Co-PMOF and Cu-PMOF) as catalysts in CO2 conversion was investigated. These MOFs demonstrated good crystallinity and porosity, providing them with two promising platforms to study CO2 conversion reactions. These heterogeneous porphyrin-based MOFs are catalytically efficient towards the chemical conversion of CO2 under moderate conditions because these MOF matrices contain a high density of active Lewis acidic and basic sites for activating CO2 and epoxide compounds. These MOFs exhibited high catalytic efficiency for the chemical fixation of CO2 at ambient temperature and solvent-free conditions. The reactions formed the proportionate cyclic carbonates in good yields. These products are valuable compounds in a variety of chemical fields.
اظهر المزيد [+] اقل [-]Dust Emission Calculation and Forecasting using CALPUFF and GCM models
2023
Tamjidi, Mahsa | Abbaspour, Madjid | Rashidi, Yousef | Mirzahosseini, Alireza
Dust is an important atmospheric phenomena that occurs in spring and summer in many regions, including Iran and its neighboring countries. Considered one of the most important challenges of the last century, this phenomenon occurs on a global scale in arid and semi-arid regions. Because of changes in climate and vegetation as well as progressive processes of soil erosion and the disturbances resulting from them, the sensitivity of regions to rapid erosion will have important reactions on the region's climate and desertification. Therefore, the current research investigated the concentration and distribution of fine dust under the influence of meteorological parameters using the GCM climate model and attempted to determine the effect of climate change on the concentration of the relevant pollutant in the coming years. In this study, the CALPUFF model considered the temporal and spatial effects of weather conditions on the transfer, transformation, and removal of atmospheric pollutants. The emission rate of the PM10 pollutant was estimated. The results indicated that the increase in greenhouse gas emissions and changes in climate variables in the near future will cause the distribution of suspended particles one of the important pollutants to increase significantly. The results also revealed a significant relationship between the degradation of air quality and the trend of air warming during the period 2046-2065.
اظهر المزيد [+] اقل [-]A Preliminary Study on the Water Quality from two Estuaries in Madura Island, East Java, Indonesia
2023
Fitrihidajati, Herlina | Purnomo, Tarzan | Rachmadiarti, Fida | Ambarwati, Reni | Yolanda, Rofiza
The water quality in the western part of Madura Island is currently faced with a severe threat due to pollution. Therefore, this study aimed to investigate the water quality from Bancaran and Kwanyar estuaries, Madura Island, using the physicochemical approaches. A total of eight physiochemical parameters such as salinity, temperature, pH, DO, CO2, BOD, Pb, and Cd were investigated at three sampling stations of each estuary on 15 June 2022 and 19 December 2022 to identify the potential environmental factors controlling the water quality for effective monitoring and management of these estuaries. The results showed that temperature (25–29.5ºC), pH (7.47–7.8), DO (2.45–4.57 ppm), CO2 (0.5–10.4 ppm), BOD (1.86–9.99 mg.L-1) and Pb (–0.55 to –0.31 mg.L-1) differed significantly (P < 0.01), while salinity (0.2–2.90‰) and Cd (0.02–0.05 mg.L-1) did not exhibit significant differences (P > 0.05). Pearson’s correlation indicated significant positive correlations between salinity and Pb, as well as Cd and Pb. According to the principal component analysis (PCA), salinity and BOD were related to the Kwanyar estuary, while the other parameters were associated with the Bancaran estuary. This preliminary investigation showed a decline in the water quality of these estuaries, specifically from DO measurement. Although low DO levels occur naturally, the continuous occurrence will affect the living organisms in the water that plays an important role in the aquatic environment. Therefore, continuous monitoring of these estuaries is needed to provide better information and for protection as well as sustainable use of water resources.
اظهر المزيد [+] اقل [-]Measurement of Natural Radioactivity Levels and Evaluation of Radiological Hazard Risks in Areas of Eastern Coastline Sediments of Lake Hawassa in Ethiopia’s Sidama Region
2023
Kebede Kassa, Messele | Tesfaye Deressu, Tilahun
Natural radioactivity levels in the eastern coastline of Lake Hawassa sediment samples of Ethiopia’s Sidama Region have been measured. Sediment samples were collected and analyzed using gamma-ray spectrometery (high purity germanium detector) to evaluate the radioisotopes of 238U (214Pb, 214Bi), 232Th (228Ac, 212Pb), and 40K and their ranges of activity concentrations were 11.70 to 29.73 Bq 〖kg〗^(-1), 19.01 to 58.61 Bq 〖kg〗^(-1), and BDL to 827.21 Bq 〖kg〗^(-1) ,with average values of 16.51 ± 1.20 Bq 〖kg〗^(-1) , 28.17 ± 2.27 Bq 〖kg〗^(-1) ,and 673.95 ± 29.92 Bq 〖kg〗^(-1) (dry mass), respectively. The radiological hazard indices average values (radium equivalent (R_eq) (108.69 Bq 〖kg〗^(-1) ); hazard index (H_ex (0.29); excess lifetime cancer risk (ELCR) (0.23 x 〖10〗^(-3) ); absorbed dose rate (D_R) (52.70 nGyh^(-1) ); annual effective dose equivalent (AEDE) (0.07 mSv〖yr〗^(-1)); and annual gonadal dose equivalent (AGDE) (0.38 mSv〖yr〗^(-1)) were also evaluated and compared to the worldwide-recommended values. All results of radiological hazard indices obtained in this study were lower than their worldwide-recommended values were 370 Bq 〖kg〗^(-1), ≤1, 59 nGyh^(-1), 0.07mSv〖yr〗^(-1), 0.29 × 〖10〗^(-3), and 0.3mSv〖yr〗^(-1) of radium equivalent activity, external hazard index, outdoor absorbed dose rate, outdoor annual effective dose equivalent, excess lifetime cancer risk, and annual gonadal dose equivalent, respectively. This suggests the eastern coastline of Lake Hawassa is safe from radioactive risk for aquatic species and various human activities, and appears as essential radiometric baseline information for further environmental monitoring programs.
اظهر المزيد [+] اقل [-]Origin of Heavy Metals amongst Nuisance Dust-Fall Particles in Western Iran
2023
Rajabi, Mahdi | Souri, Bubak
The purpose of this study was to evaluated the origin of the heavy metals amongst nuisance dust particles in Sanandaj, Khorrmabad and Andimeshk cities located in different latitudes in western Iran for the dustiest year during last decade. Samples of dust-fall particles were collected with 10 days intervals from these three cities for the duration of June 2012 to July 2013 using Deposit Gauge Method. Concentration of the heavy metals including iron, manganese, zinc, copper, arsenic, chromium, silver, nickel, lead and cadmium were measured using atomic absorption spectroscopy. The Quantification of Contamination index (QC) was applied to evaluate the origin of heavy metals among dust-fall particles collected in three stations. The results revealed that the annual mean rate of dust-fall was 1.73, 2.66 and 3.37 g/m2 per 10 days for Sanandaj, Khorramabad and Andimeshk, respectively. The highest and the lowest amount of dust-fall were obtained for July and February, respectively, while Fe had the highest concentration among the metals studied. The temperature and wind speed were found to be the most correlated meteorological parameters to dust-fall content throughout the three stations. According to QC index; Ag, Cu, Cd, As, Pb, Mn and Zn (except Pb and Mn for Andimeshk) were derived mainly from similar origins such as anthropogenic activities but the increased values of Fe, Ni, and Cr were ascribed to natural processes. Furthermore, Cu had the highest correlation with other heavy metals measured and was determined the most stable metal amongst dust-fall particles for the three studied stations.
اظهر المزيد [+] اقل [-]Gamma Radiation Profile of the High Background Radiation Area along Southwest Coastal India and its Neighbourhood
2023
Sukumaran Chettiar Rajamma, Soniya | Abraham, Sunila | Panakal John, Jojo
Radioactive contamination of the earth’s biosphere has always been a source of concern. From the health point of view, radiation exposure and dose delivered to human beings are of prime importance. Certain parts of coastal southwest districts of the state of Kerala in India namely Thiruvananthapuram (Trivandrum), Kollam (Quilon) and Alappuzha (Alleppey) are known high background radiation areas (HBRA) owing to the presence of rich quantities of thorium and uranium. Surface soil samples from these districts' HBRAs and adjoining regions were studied for their primordial radionuclide levels using NaI(Tl) based gamma-ray spectrometry. Specific activities of 226Ra, 232Th and 40K nuclides in soil samples from the whole study area were between 4.7 Bq/kg to 130 Bq/kg, 6.5 Bq/kg to 611 Bq/kg and 101 Bq/kg to 1852 Bq/kg, respectively. Important dosimetric parameters namely radium equivalent activity (Raeq), absorbed gamma dose (D), Indoor and outdoor Annual Effective Dose equivalents (AEDin & AEDout), internal and external hazard indices (Hin & Hex) for gamma exposure, and Excess Lifetime Cancer Risk (ELCR) were also determined to assess probable health effects on human beings residing in these regions. A comparison of average specific radioactivities and average indoor annual effective doses between the HBRA and Normal background Radiation Area (NBRA) is presented. Results show that the neighbouring regions have considerably lower radiation dosimetric parameters.
اظهر المزيد [+] اقل [-]Chemical Fraction and Health Effect of Size Segregate PM at National Highway of Northern India
2023
Tiwari, Rahul | Botle, Akshay | Rajouriya, Kalpana | P Singh, Prabal | Taneja, Ajay
Sampling was conducted on Agra-Delhi national highway NH-2. Samples were collected with the help of Sioutas cascade impactor. During the sampling, PM1.0-0.5 (255.85µg/m3) was higher than PM2.5-1.0 (218.96µg/m3). The AQI value for the average PM2.5 concentration also exceeded the severe AQ limit (401-500). These results showed that PM2.5 pollution has a significant influence on the site as a result of a variety of anthropogenic activities. During the summer season, for PM1.0-0.5 and PM2.5-1.0 highest values (µg/m3) of metals followed the same trend and it was observed as Mg(6.52)> Ca(5.89)> Al(3.64)> while for PM2.5-1.0 it was as Mg(10.12)> Ca(9.5)> Al(5.95) respectively. At roadside, most of these metals are emitted from the resuspension of dust and vehicle activities which causes serious diseases to the human being. Cd, Cr, Cu, Pb, and Zn were highly enriched at national highway sampling sites, highlighting the crustal source, which has a major impact on metals concentration, followed by anthropogenic sources. The present research was conducted to find out the concentration level of metals in PM2.5-1.0 and PM1.0-0.5 particles in Agra, India to find out the health risk assessment at highway site.From the results, it was observed that all metals bound to larger size PM has high bioavailability. From the health risk assessment, it was found that all the metals bound smaller size particles showed higher HQ except in the case of Ni and Al. Cr, Pb showed carcinogenic risk to children and adults in both size fraction of PM except in the case of Ni.
اظهر المزيد [+] اقل [-]Investigating the Impact of Virtual Education on Air Pollution Indicators in Tehran during the COVID-19 Outbreak
2023
Omidifar, Reza | Mazari, Ebrahim | Ostadalidehaghi, Rezvan
This research aims to investigate the effect of virtual education during the COVID-19 outbreak on air pollution indicators in Tehran. The study uses quantitative methods, including One-Way ANOVA, to analyze the air pollution indicators before and during the COVID-19 pandemic. Data on air pollution indicators in Tehran from 2018, 2019, and 2020 were collected from Tehran Air Control Company and compared using statistical tests. The year 2019 represents virtual education, while 2018 and 2020 represent face-to-face education. The examined indicators include particulate matters with a diameter less or equal than 2.5μ (PM2.5), SO2, NOX (i.e., NO2 and NO), O3, and CO. The results of variance analysis show significant differences in the PM2.5and NOX indices between virtual and face-to-face training days. Follow-up tests by Toki and Scheffé indicate that in 2019, when education was fully virtual, the levels of these pollutants were lower compared to 2018 and 2020. However, there were no significant differences in the SO2, O3, and CO indices during the days of virtual education compared to the years before and after. This suggests that virtual education during the COVID-19 outbreak contributed to pollution reduction by reducing traffic to educational organizations and its indirect effects.
اظهر المزيد [+] اقل [-]Review of Phytoremediation for Arsenic-Contaminated Soils: Mechanisms and Challenges
2023
Soltanian, Mehdi | Salmak, Saba | Shahriari, Toktam
Environmental pollution has become and increasing concern due to growing risk to human health. Soil pollution is an aspect of environmental pollution that has received comparatively less attention than water pollution. However, considering direct effects of contaminants transmission through ingestion to the human body, it can lead to greater risks for human health. Arsenic is a highly prevalent environmental pollutant, and considerable number of people worldwide suffer from constant exposure to it. While there are several ways to manage and remediate contaminated soils, phytoremediation has been paid special attention due to its higher social acceptability and lower cost. Nevertheless, this approach faces challenges, including effectively handling significant quantities of contaminated biomass, managing it appropriately, and selecting suitable plant species for the remediation process. In this regard, numerous endeavors have been undertaken to tackle these obstacles like strategies encompass the utilization of amendments, adept management of biomass, and the implementation of hybrid remediation approaches. This study aims to review prior research on mechanisms, challenges, and enhanced phytoremediation of arsenic-contaminated soils, encompassing reduction of contaminated biomass after phytoremediation.
اظهر المزيد [+] اقل [-]