خيارات البحث
النتائج 421 - 430 من 6,473
Use of water quality index and multivariate statistical methods for the evaluation of water quality of a stream affected by multiple stressors: A case study
2020
Varol, Memet
The Sürgü Stream, located in the Euphrates River basin of Turkey, is used for drinking water source, agricultural irrigation and rainbow trout production. Therefore, water quality of the stream is of great importance. In this study, multivariate statistical techniques (MSTs) and water quality index (WQI) were applied to assess water quality of the stream affected by multiple stressors such as untreated domestic sewage, effluents from fish farms, agricultural runoff and streambank erosion. For this, 16 water quality parameters at five sites along the stream were monitored monthly during one year. Most of parameters showed significant spatial variations, indicating the influence of anthropogenic activities. All parameters except TN (total nitrogen) showed significant seasonal differences due to high seasonality in WT (water temperature) and water flow. The spatial variations in the WQI were significant (p < 0.05) and the mean WQI values ranged from 87.6 to 95.3, indicating “good” to “excellent” water quality in the stream. Cluster analysis classified five sites into three groups, that is, clean region, low polluted region and very clean region. Stepwise temporal discriminant analysis (DA) identified that pH, WT, Cl⁻, SO₄²⁻, COD (chemical oxygen demand), TSS (total suspended solids) and Ca²⁺ are the parameters responsible for variations between seasons, and stepwise spatial DA identified that DO (dissolved oxygen), EC (electrical conductivity), NH₄–N, TN (total nitrogen) and TSS are the parameters responsible for variations between the regions. Principal component analysis/factor analysis revealed that the parameters responsible for water quality variations were mainly associated with suspended solids (both natural and anthropogenic), soluble salts (natural) and nutrients and organic matter (anthropogenic).
اظهر المزيد [+] اقل [-]Characterization of microplastics on filter substrates based on hyperspectral imaging: Laboratory assessments
2020
Zhu, Chunmao | Kanaya, Yūgō | Nakajima, Ryota | Tsuchiya, Masashi | Nomaki, Hidetaka | Kitahashi, Tomo | Fujikura, Katsunori
Microplastic pollution has become an urgent issue because it adversely affects ecosystems. However, efficient methods to detect and characterize microplastic particles are still in development. By conducting a series of laboratory assessments based on near-infrared hyperspectral imaging in the wavelength range of 900–1700 nm, we report the fundamental spectral features of (i) 11 authentic plastics and (ii) 11 filter substrate materials. We found that different plastic polymers showed distinct spectral features at 1150–1250 nm, 1350–1450 nm and 1600–1700 nm, enabling their automatic recognition and identification with spectral separation algorithms. Using an improved hyperspectral imaging system, we demonstrated the detection of three types of microplastic particles, polyethylene, polypropylene and polystyrene, down to 100 μm in diameter. As a filter substrate, a gold-coated polycarbonate filter (GPC0847-BA) showed constant reflectance over 900–1700 nm and a large radiative contrast against loaded plastic particles. Glass fiber filters (GF10 and GF/F) would also be suitable substrates due to their low cost and easy commercial availability. This study provides key parameters for applying hyperspectral imaging techniques for the detection of microplastics.
اظهر المزيد [+] اقل [-]Enhanced reactivity of iron monosulfide towards reductive transformation of tris(2-chloroethyl) phosphate in the presence of cetyltrimethylammonium bromide
2020
Li, Dan | Zhong, Yin | Zhu, Xifen | Wang, Heli | Yang, Weiqiang | Deng, Yirong | Huang, Weilin | Peng, Ping’an
Tris(2-chloroethyl) phosphate (TCEP) is a widely found emerging pollutant due to its heavy usage as a flame retardant. It is chemically stable and is very difficult to removal from water. The goal of this study was to explore whether iron monosulfide (FeS) can be used for reductive transformation of TCEP as FeS can react with a variety of halogenated organic contaminants. We used batch reactor systems to quantify the transformation reactions in the absence and presence of cetyltrimethylammonium bromide (CTAB, a common surfactant in aquatic environments). The results showed that, in the presence of CTAB (100 mg L⁻¹), FeS exhibited much greater reactivity towards TCEP as 93% of initial TCEP had been transformed within 14 d of reaction. In the absence of CTAB, it required 710 d of reaction to achieve 97.3% reduction of initial TCEP. The enhancement of CTAB on TCEP transformation rate could be due to the facts that CTAB could stabilize FeS suspension against aggregation, protect FeS from rapid oxidation, and increase surface adsorption of TCEP on FeS. XPS analysis showed that both Fe(II) and S(-II) species on the FeS surface were involved in the reductive transformation of TCEP. Analysis of transformation products revealed that TCEP was reductively transformed into bis(2-chloroethyl) phosphate (BCEP), Cl⁻ and C₂H₄. These findings showed that FeS may play an important role in the reductive transformation of TCEP when TCEP coexisting with CTAB in aquatic environments.
اظهر المزيد [+] اقل [-]Control of the mobility of heavy metals in soil from disposal of bio-solid and olive by-product ashes using waste additives
2020
Vamvuka, D. | Papaiōannou, G. | Alexandrakis, S. | Stratakis, A.
In compliance to European Union directives to reuse urban wastes as secondary fuels, the aim of present work was to investigate and control the environmental impact from disposal of ashes generated by combustion of a bio-solid, an olive by-product and their blend. Two waste materials were admixed with the ash and their performance as potential stabilizers was assessed. Metals and ions leached through a soil were measured.The results showed that dissolution of some alkaline substances raised the pH of water effluents, decreasing the extractability of heavy metals from the ashes. In some cases Cr and As leached reached hazardous levels. Upon addition of waste materials to ash, the concentration of Cr in liquid extracts was reduced by 35–97%, while that of Cu and As by 100%. All heavy metal values measured in the leachates were decreased to values below legislation limits. The mineralogy, the chemistry and the pH of solids involved were key factors for the retention of elements.
اظهر المزيد [+] اقل [-]Transportation and degradation of decabrominated diphenyl ether in sequential anoxic and oxic crop rotation
2020
Zhao, Pengfei | Wang, Wei | Whalen, Joann K. | Zhang, Subin | Ye, Qingfu
This work evaluated the debromination and uptake of ¹⁴C-labeled BDE-209 in rice cultivars grown in anoxic soil for 120 days (d) followed by cultivation of vegetables (peanut, eggplant and pepper) in oxic soil (120 d). Degradation of BDE-209 to lower polybrominated diphenyl ethers (PBDEs) occurred in cultivated soils, and more metabolites were released in oxic soil than in anoxic soil. The crop rotation from anoxic to oxic greatly enhanced the dissipation of BDE-209 in the soil (P < 0.05), in which the dissipation in anoxic soil planted with Huanghuazhan (HHZ, indica) and Yudao 1 (YD1, indica) were 6.8% and 2.4%, respectively, while in oxic soil with peanut and pepper were increased to 25.8% and 21.7%, respectively. The crop rotation also enhanced the degradation of BDE-209 in the soil, the recovered BDE-209 in soil after 120 d anoxic incubation with YD1 was 81.1%, but it decreased to 47.8% and 45.8% after another 120 d oxic incubation. Bioconcentration factors were between 0.23 and 0.36 for rice, eggplant and pepper but reached to 0.5 in peanut, which contains more lipids in the edible portion than the other test crops. The estimated daily intake for vegetables was 0.01–0.07 μg BDE-209-equivalent kg⁻¹ bw day⁻¹, which is at least two orders of magnitude below the maximum acceptable oral dose (7 μg kg⁻¹ bw day⁻¹). Our work confirms that crop rotation from rice to vegetable enhanced the dissipation and debromination of BDE-209 in the soil, and indicate that sequential anoxic-oxic rotation practice is considered to be effective in remediation of environmental pollutants.
اظهر المزيد [+] اقل [-]Selenium prevent cadmium-induced hepatotoxicity through modulation of endoplasmic reticulum-resident selenoproteins and attenuation of endoplasmic reticulum stress
2020
Zhang, Cong | Ge, Jing | Lv, Meiwei | Zhang, Qi | Talukder, Milton | Li, Jin-Long
Cadmium (Cd), a heavy metal contaminant, exists in humans and animals throughout life and closely associate with severe hepatotoxicity. Selenium (Se) has been recognized as an effective chemo-protectant of Cd, but the underlying mechanisms remain unclear. The objective of the present study is to illustrate the antagonistic effect of Se against Cd-induced hepatotoxicity. Primary hepatocytes were cultured in the presence of 5 μM Cd, 1 μM Se and the mixture of 1 μM Se and 5 μM Cd for 24 h. Cell viability and morphology, antioxidant status, endoplasmic reticulum (ER) stress response and selenotranscriptome were assessed. It was observed that Se treatment dramatically alleviated Cd-induced hepatocytes death and morphological change. Simultaneously, Se mitigated Cd-induced oxidative stress by reducing ROS production, increasing reduced glutathione (GSH) level and increasing selenoenzyme (glutathione peroxidase, GPX) activity. Cd induced hepatotoxicity via disordering ER-resident selenoproteins transcription and triggering ER stress and unfolded protein response. Supplementary Se evidently relieved hepatocytes injury via modulating ER-resident selenoproteins transcription to inhibit ER stress. Collectively, our findings showed a potential protection of Se against Cd-induced hepatotoxicity via suppressing ER stress response.
اظهر المزيد [+] اقل [-]Microwave-assisted rapid degradation of DDT using nanohybrids of PANI with SnO2 derived from Psidium Guajava extract
2020
Riaz, Ufana | Zia, Jannatun
The present work reports microwave-assisted synthesis of SnO₂ nanoparticles via green route using Psidium Guajava extract. For the enhancement of catalytic activity, nanohybrids of SnO₂ were formulated using different ratios of polyaniline (PANI) via ultrasound-assisted chemical polymerization. Formation of nanohybrids was confirmed via IR and XPS studies. The UV–vis DRS spectra of PANI/SnO₂ revealed significant reduction in the optical band gap upon nanohybrid formation. Microwave-assisted catalytic efficiency of pure SnO₂, PANI, PANI/SnO₂ nanohybrids was investigated using DDT as a model persistent organic pollutant. The degradation efficiency of PANI/SnO₂ was found to increase with the increase in the loading of PANI. Around 87% of DDT degradation was achieved within a very short period of 12 min under microwave irradiation using PANI/SnO₂-50/50 as catalyst. The effect of DDT concentration was explored and the degradation efficiency of PANI/SnO₂-50/50 catalyst was noticed to be as high as 82% in presence of 100 mg/L of DDT. The effect of microwave power on the degradation efficiency revealed 79% degradation using the same nanohybrid when exposed to microwave irradiation for 5 min under 1110 W microwave power. Scavenging studies confirmed the generation of OH, O₂⁻ radicals. The fragments with m/z values as low as 86 and 70 were confirmed by LCMS analysis. Recyclability tests showed that PANI/SnO₂-50/50 nanohybrid exhibited 81% degradation of DDT (500 mg/L) even after the third cycle, which reflected high catalytic efficiency as well as remarkable stability of the catalyst. This green nanohybrid could therefore be effectively utilized for the rapid degradation of persistent organic pollutants.
اظهر المزيد [+] اقل [-]Bacterial foraging facilitates aggregation of Chlamydomonas microsphaera in an organic carbon source-limited aquatic environment
2020
Zhao, Ranran | Chen, Guowei | Liu, Li | Zhang, Wei | Sun, Yifei | Li, Baoguo | Wang, Gang
Microalgal aggregation is a key to many ecosystem functions in aquatic environments. Yet mechanistic understanding of microalgae aggregation, especially the interactions with ubiquitous bacteria populations, remains elusive. We reported an experimental study illustrating how the emerging bacterial populations interacted with a model microalga (Chlamydomonas microsphaera) cells and the consequent aggregation patterns. Results showed that the emergence of bacterial populations significantly stimulated C. microsphaera aggregation. Both bacterial and C. microsphaera motilities were remarkably excited upon coculturing, with the mean cell velocity being up to 2.67 and 1.80 times of those of separate bacterial and C. microsphaera cultures, respectively. The stimulated bacterial and C. microsphaera cell velocity upon coculturing would likely provide a mechanism for enhanced probability of cell-cell collisions that led to amplified aggregation of C. microsphaera population. Correlation analysis revealed that bacterial resource foraging (for polysaccharides) was likely a candidate mechanism for stimulated cell motility in an organic carbon source-limited environment, whereby C. microsphaera-derived polysaccharides serve as the sole organic carbon source for heterotrophic bacteria which in turns facilitates bacteria-C. microsphaera aggregation. Additional analysis showed that bacterial populations capable of successive decomposing algal-derived organic matters dominated the cocultures, with the top five abundant genera of Brevundimonas (24.78%), Shinella (17.94%), Sphingopyxis (11.62%), Dongia (5.82%) and Hyphomicrobium (5.45%). These findings provide new insights into full understanding of microalgae-bacteria interactions and consequent microbial aggregation characteristics in aquatic ecosystems.
اظهر المزيد [+] اقل [-]The effect of intervention in nickel concentrations on benthic macroinvertebrates: A case study of statistical causal inference in ecotoxicology
2020
Takeshita, Kazutaka M. | Hayashi, Takehiko I. | Yokomizo, Hiroyuki
Field survey-based ecological risk assessments for trace metals are conducted to examine the necessity and/or effectiveness of management intervention, such as setting of environmental quality standards. Observational datasets often involve confounders that may bias estimation of the effects of intervention (e.g., reduction of trace-metal concentrations through regulation). The field of ecotoxicology lags behind some other research fields in understanding proper analytical procedures for causal inference from observational datasets; there are only a few field survey-based ecotoxicological studies that have explicitly controlled for confounders in their statistical analyses. In the present study, we estimated the effect of intervention in nickel concentrations on Ephemeroptera, Plecoptera, and Trichoptera richness in rivers in Japan. We also provide detailed explanations for the backgrounds of spurious associations derived from confounders and on proper analytical procedures for obtaining an unbiased estimate of the targeted intervention effect by using regression analysis. We constructed a multiple regression model based on a causal diagram for aquatic insects and environmental factors, and on “the backdoor criterion,” that enabled us to determine the set of covariates required to obtain an unbiased estimate of the targeted intervention effect from regression coefficients. We found that management intervention in nickel concentrations may be ineffective compared to intervention in organic pollution, and that analysis ignoring the confounders overestimated the effect of intervention in nickel concentrations. Our results highlight the fact that confounders can lead to misjudging the necessity for management of anthropogenic chemical substances. Confounders should be explicitly specified and statistically controlled to achieve a comprehensive assessment of ecological risks for various substances.
اظهر المزيد [+] اقل [-]Low-level maternal exposure to cadmium, lead, and mercury and birth outcomes in a Swedish prospective birth-cohort
2020
Gustin, Klara | Barman, Malin | Stråvik, Mia | Levi, Michael | Englund-Ögge, Linda | Murray, Fiona | Jacobsson, Bo | Sandberg, Ann-Sofie | Sandin, Anna | Wold, Agnes E. | Vahter, Marie | Kippler, Maria
Observational studies have indicated that low-to-moderate exposure to cadmium (Cd), lead (Pb), and mercury (Hg) adversely affects birth anthropometry, but results are inconclusive. The aim of this study was to elucidate potential impact on birth anthropometry of exposure to Cd, Pb, and Hg in pregnant women, and to identify the main dietary sources. In the NICE (Nutritional impact on Immunological maturation during Childhood in relation to the Environment) birth-cohort in northern Sweden, blood and urine were collected from pregnant women in early third trimester. Cd, Pb and Hg were measured in erythrocytes (n = 584), and Cd also in urine (n = 581), by inductively coupled plasma mass spectrometry. Dietary data were collected through a semi-quantitative food frequency questionnaire administered in mid-third trimester. Birth anthropometry data were extracted from hospital records. In multivariable-adjusted spline regression models, a doubling of maternal erythrocyte Cd (median: 0.29 μg/kg) above the spline knot of 0.50 μg/kg was associated with reduced birth weight (B: −191 g; 95% CI: −315, −68) and length (−0.67 cm; −1.2, −0.14). The association with birth weight remained when the analysis was restricted to never-smokers. Likewise, a doubling of erythrocyte Hg (median 1.5 μg/kg, mainly MeHg) above 1.0 μg/kg, was associated with decreased birth weight (−59 g; −115, −3.0), and length (−0.29 cm; −0.54, −0.047). Maternal Pb (median 11 μg/kg) was unrelated to birth weight and length. Erythrocyte Cd was primarily associated with intake of plant derived foods, Pb with game meat, tea and coffee, and Hg with fish. The results indicated that low-level maternal Cd and Hg exposure were associated with poorer birth anthropometry. Further prospective studies in low-level exposed populations are warranted.
اظهر المزيد [+] اقل [-]