خيارات البحث
النتائج 421 - 430 من 6,535
Influences of eutrophication on methanogenesis pathways and methanogenic microbial community structures in freshwater lakes
2020
Yang, Yuyin | Chen, Jianfei | Tong, Tianli | Xie, Shuguang | Liu, Yong
Freshwater lakes, especially eutrophic ones, have become a hotspot of methanogenesis. However, the effects of eutrophication and seasonality on methanogenesis activity and methanogenic microbial community remain unclear. In the current study, for two adjacent lakes at different trophic status, their methanogenesis potential in different seasons was evaluated using incubation experiments. The density, diversity, and community structure of methanogens were analyzed based on the mcrA gene. Correlation analysis and redundancy analysis were carried out to identify the environmental factors driving the variations of methanogenesis potential and methanogen community. The results showed that eutrophication could result in active methanogenesis with relatively high seasonal variance. The methanogenesis variation could be well explained by carbon input in association with algal growth, as well as the change of methanogen population density. With the dominance of Methanomicrobiales in both lakes, the hydrogenotrophic pathway had a major contribution to total methane production. The considerable proportion of Methanomassiliicocales in eutrophic lake implied that methylotrophic methanogenesis might be previously underestimated. These results added new insights towards methanogenesis process in eutrophic freshwater lakes.
اظهر المزيد [+] اقل [-]Potential transition in the effects of atmospheric nitrogen deposition in China
2020
Zhu, Jianxing | Chen, Zhi | Wang, Qiufeng | Xu, Li | He, Niangpeng | Jia, Yanlong | Zhang, Qiongyu | Yu, Guirui
Nitrogen (N) deposition in China may increase due to urbanization and economic growth. Current research has considered the ecological significance under the assumption of increasing N deposition. Atmospheric N deposition tending toward levelling or declining has been observed in China. Such potential recovery and responses of high N loads ecosystems under decreasing atmospheric N deposition scenarios have yet to be adequately investigated. This work reviews existing literature to consider possible responses of carbon (C) sequestration, biodiversity and species composition, soil acidification, and greenhouse emissions in ecosystems responding to recent patterns of N deposition. Potential effects of N composition and internal ratios may be further explored through state-of-the-art N addition experiments and model development.
اظهر المزيد [+] اقل [-]Enhancement of the denitrification in low C/N condition and its mechanism by a novel isolated Comamonas sp. YSF15
2020
Su, Jun feng | Yang, Shu | Huang, Ting lin | Li, Min | Liu, Jia ran | Yao, Yi xin
A novel denitrifying bacterium YSF15 was isolated from the Lijiahe Reservoir in Xi’an and identified as Comamonas sp. It exhibited excellent nitrogen removal ability under low C/N conditions (C/N = 2.5) and 94.01% of nitrate was removed in 18 h, with no accumulation of nitrite. PCR amplification and nitrogen balance experiments were carried out, showing that 68.92% of initial nitrogen was removed as gas products and the nitrogen removal path was determined to be NO3−-N→NO2−-N→NO→N2O→N2. Scanning electron microscopy and three-dimensional fluorescence spectroscopy were used to track extracellular polymeric substances (EPS). The results show that complete-denitrification under low C/N conditions is associated with EPS, which may provide a reserve carbon source in extreme environments. These findings reveal that Comamonas sp. YSF15 can provide novel basic materials and a theoretical basis for wastewater bioremediation under low C/N conditions.
اظهر المزيد [+] اقل [-]Exposure assessment of emissions from mobile food carts on New York City streets
2020
Nahar, Kamrun | Rahman, Md Mostafijur | Raja, Amna | Thurston, George D. | Gordon, Terry
Food carts are common along streets in cities throughout the world. In North America, food cart vendors generally use propane, charcoal, or both propane and charcoal (P and C) for food preparation. Although cooking emissions are known to be a major source of indoor air pollution, there is limited knowledge on outdoor cooking’s impact on the ambient environment and, in particular, the relative contribution of the different cooking fuels. This field study investigated the air pollution the public is exposed to in the micro-environment around 19 food carts classified into 3 groups: propane, charcoal, and P and C carts. Concentrations near the food carts were measured using both real-time and filter-based methods. Mean real-time concentrations of PM₂.₅, BC₂.₅, and particle counts were highest near the charcoal food carts: 196 μg/m³, 5.49 μg/m³, and 69,000 particles/cm³, respectively, with peak exposures of 1520 μg/m³, 67.9 μg/m³, and 235,000 particles/cm³, respectively. In order of pollution emission impacts: charcoal > P and C > propane carts. Thus, significant differences in air pollution emissions occurred in the vicinity of mobile food carts, depending on the fuel used in food preparation. Local air pollution polices should consider these emission factors in regulating food cart vendor operations.
اظهر المزيد [+] اقل [-]Association between phthalate exposure and risk of spontaneous pregnancy loss: A systematic review and meta-analysis
2020
Zhang, Hong | Gao, Fumei | Ben, Yujie | Su, Yuping
Numerous studies suggested that phthalates might be associated with increased risk of spontaneous pregnancy loss. However, these results were conflicting and inconclusive. Thus we performed this systematic review and meta-analysis to assess the relationship between phthalate exposure and risk of pregnancy loss. We searched PubMed, EMBASE, Web of Science and major Chinese literature databases for studies investigating phthalates and spontaneous pregnancy loss. Pooled odds ratio (OR) with 95% confident interval (CI) were calculated for risk estimate. A total of 8 studies involving 4713 participants (including 651 cases and 4062 controls) were enrolled in the present meta-analysis. Our pooled results showed that spontaneous pregnancy loss was associated with higher urinary levels of monobutyl phthalate (MBP) (OR: 1.34, 95% CI: 1.04–1.72), mono(2-ethylhexyl) phthalate (MEHP) (OR: 1.57, 95% CI: 1.29–1.90), mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) (OR: 1.59, 95% CI: 1.23–2.07) and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) (OR: 1.47, 95% CI: 1.15–1.89). Indirect estimate of di-2-ethylhexyl phthalate (DEHP) levels, which were pooled from molar sum of urinary DEHP metabolites and hair DEHP, were also correlated with elevated risk of spontaneous pregnancy loss (OR: 1.79, 95% CI: 1.27–2.53). No significant association was found regarding urinary concentrations of monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-isobutyl phthalate (MiBP), monobenzyl phthalate (MBzP) or mono(2-ethyl-5-carboxypentyl) phthalate (MECPP). Our findings indicate that phthalate exposure might be a risk factor for spontaneous pregnancy loss. Given indirect estimate of phthalate exposure by evaluating its metabolite levels, our results should be interpreted with caution.
اظهر المزيد [+] اقل [-]Trajectory and weathering of oil spill in Daya bay, the South China sea
2020
Zhen, Zhu | Li, Daming | Li, Yanqing | Chen, Shou | Bu, Shilong
With the development of marine resources and marine transportation, oil spill accidents occur frequently which threaten the marine ecological environment and human life. In this paper, an oil spill model was established. The two-dimensional shallow water equation was discretized by the finite element weighted lumped mass method, and the time is discretized by the forward Euler scheme, then the planar two-dimensional hydrodynamic model was established. The model was verified by measure tidal level data. The oil particle drift model and oil spill weathering model were established in this paper, and it can be used to simulate the oil spill accidents on the sea area by inputting the terrain data, environmental conditions and oil spill information into the hydrodynamic model and oil spill model. The model is applied to Daya Bay, South China Sea, the oil spill behavior and destination under different residual currents were simulated and calculated, the pollution area of oil spill under clockwise residual flow is larger than that under anti-clockwise residual flow. The oil spill model is mainly used to simulate oil spill accidents on the sea surface such as ship oil spill accidents, and the simulation results can provide theoretical basis for taking effective emergency measures and risk assessment after oil spill.
اظهر المزيد [+] اقل [-]Polyvinylpyrolidone-functionalized silver nanoparticles do not affect aerobic performance or fractional rates of protein synthesis in rainbow trout (Oncorhynchus mykiss)
2020
Ollerhead, K.M. | Adams, O.A. | Willett, N.J. | Gates, M.A. | Bennett, J.C. | Murimboh, J. | Morash, A.J. | Lamarre, S.G. | MacCormack, T.J.
Aerobic performance in fish is linked to individual and population fitness and can be impacted by anthropogenic contaminants. Exposure to some engineered nanomaterials, including silver nanoparticles (nAg), reduces rates of oxygen consumption in some fish species, but the underlying mechanisms remain unclear. In addition, their effects on swim performance have not been studied. Our aim was to quantify the impact of exposure to functionalized nAg on aerobic scope and swim performance in rainbow trout (Oncorhychus mykiss) and to characterize the contribution of changing rates of protein synthesis to these physiological endpoints. Fish were exposed for 48 h to 5 nm polyvinylpyrolidone-functionalized nAg (nAgPVP; 100 μg L⁻¹) or 0.22 μg L⁻¹ Ag⁺ (as AgNO₃), which was the measured quantity of Ag released from the nAgPVP over that time period. Aerobic scope, critical swimming speed (Ucᵣᵢₜ), and fractional rates of protein synthesis (Kₛ), were then assessed, along with indicators of osmoregulation and cardiotoxicity. Neither nAgPVP, nor Ag⁺ exposure significantly altered aerobic scope, its component parts, or swim performance. Kₛ was similarly unaffected in 8 tissue types, though it tended to be lower in liver of nAgPVP treated fish. The treatments tended to decrease gill Na⁺/K⁺-ATPase activity, but effects were not significant. The latter results suggest that a longer or more concentrated nAgPVP exposure may induce significant effects. Although this same formulation of nAgPVP is bioactive in other fish, it had no effects on rainbow trout under the conditions tested. Such findings on common model animals like trout may thus misrepresent the safety of nAg to more sensitive species.
اظهر المزيد [+] اقل [-]Interactive effects of earthworm Eisenia fetida and bean plant Phaseolus vulgaris L on the fate of soil selenium
2020
Azhar-u-ddin, | Huang, Jung-Chen | Gan, Xinyu | He, Shengbing | Zhou, Weili
Selenium (Se) is an essential micronutrient for animals with a narrow margin between essentiality and toxicity. Se toxicity is largely related to inorganic forms of Se in soil, i.e., selenite and selenate that enter food chains through plant uptake, threatening higher trophic level organisms. This experiment investigated effects of earthworm activity on Se bioavailability in soil and the subsequent plant uptake, using earthworm Eisenia fetida and bean plant Phaseolus vulgaris L, both exposed to either selenite or selenate at 1 or 4 mg Se kg⁻¹ for 16 weeks. Plants took up selenate (up to 221-fold) faster than selenite, with up to 84% of the Se rapidly transported to shoots. In the presence of earthworms, Se accumulation obviously increased for selenate-supplied plants, leading to an up to 4% increase in Se translocation factor for all treatments except for 1 mg kg⁻¹ selenite treatment. Earthworms also concentrated Se faster in tissues (up to 274 mg kg⁻¹ DW) at exposure to selenate. For Se toxicity, Se speciation analysis was conducted on the plants and earthworms using XAS. Compared to worm-free treatments, the percentage of organo-Se, i.e., SeMet and CysSeSeCys, increased in beans (up to 34%) in the presence of earthworms for selenate, while the elemental Se portion was significantly reduced or absent, opposite to the results for selenite. Surprisingly, elemental Se (up to 65%) dominated earthworms, regardless of the form of Se supplied. In conclusion, earthworms clearly enhanced Se uptake and translocation in plants, leading to elevated Se levels in shoots. To prevent resulting hazards to humans and other animals, caution should be taken while consuming the shoots, particularly beans, harvested from the Se contaminated soil where earthworm activity is high. Finally, the significant reduction in soil Se suggests phytoextraction of Se from the soil could be improved using earthworms as an aid to plants.
اظهر المزيد [+] اقل [-]Freshwater microplastic concentrations vary through both space and time
2020
Stanton, Thomas | Johnson, Matthew | Nathanail, P. (Paul) | MacNaughtan, William | Gomes, Rachel L.
Plastic pollution represents one of the most salient indicators of society’s impact on the environment. The microplastic component of this is ubiquitous, however, microplastic studies are seldom representative of the locations they sample. Over 12 months we explored spatiotemporal variation in microplastic prevalence across a freshwater system and in atmospheric deposition within its catchment, in one of the most temporally comprehensive studies of microplastic pollution. Microplastics were quantified in low concentrations (max 0.4 particles L⁻¹) at all freshwater sites, including upstream of urban areas, and on rivers that do not receive wastewater treatment plant effluent. Extrapolated microplastic abundances at each site varied by up to 8 orders of magnitude over the course of the sampling campaign, suggesting that microplastic surveys that do not account for temporal variability misrepresent microplastic prevalence. Whilst we do not wish to underplay the potential impacts of microplastic particles in the environment, we argue that microplastic pollution needs to be placed in a more critical context, including assessment of temporal variability, to appropriately inform legislators and consumers.
اظهر المزيد [+] اقل [-]Effect and mechanism of the algicidal bacterium Sulfitobacter porphyrae ZFX1 on the mitigation of harmful algal blooms caused by Prorocentrum donghaiense
2020
Zhang, Fuxing | Fan, Yongxiang | Zhang, Danyang | Chen, Shuangshuang | Bai, Xue | Ma, Xiaohong | Xie, Zhong | Xu, Hong
Sulfitobacter porphyrae ZFX1, isolated from surface seawater of the East China Sea during a Prorocentrum donghaiense bloom recession, exhibits high algicidal activity against P. donghaiense. To evaluate the algicidal effect of ZFX1, the algicidal mode and stability were investigated. The results showed that ZFX1 indirectly attacked algae by secreting algicidal compounds, and the algicidal activity of the ZFX1 supernatant was insensitive to different temperatures, light intensities and pH values (pH 3–12). To explore the algicidal mechanism of the ZFX1 supernatant, its effects on the morphological and ultrastructural alterations, photosynthetic capacity, reactive oxygen species (ROS) and antioxidative system of P. donghaiense were investigated. Scanning and transmission electron microscopy revealed that the ZFX1 supernatant destroyed the algal cell membrane structure and caused intracellular leakage. The decrease in the chlorophyll a content and the marked declines in both the photosynthetic efficiency (Fv/Fm) and the electron transport rate (rETR) indicated that the ZFX1 supernatant could damage the photosynthetic system of P. donghaiense. The excessive production of ROS in algal cells demonstrated the oxidative damage triggered by the ZFX1 supernatant. Although the antioxidant defense system of P. donghaiense was activated to scavenge excessive ROS, lipid oxidation occurred. The fatty acid composition profile indicated that the ZFX1 supernatant markedly increased the contents of two saturated fatty acids and a monounsaturated fatty acid and decreased the proportion of two polyunsaturated fatty acids, which resulted in lipids with a lower degree of unsaturation (DU). The decline in the DU decreased the lipid fluidity and rigidified the membrane system, and these effects destroyed the function of the membrane system and ultimately resulted in algal cell death. Therefore, ZFX1 probably plays a key role in mitigating P. donghaiense bloom by inducing lipid oxidation, decreasing the DU of lipids and ultimately destroying the membrane systems of algal cells.
اظهر المزيد [+] اقل [-]