خيارات البحث
النتائج 431 - 440 من 5,151
Long-term dim light during nighttime changes activity patterns and space use in experimental small mammal populations النص الكامل
2018
Hoffmann, Julia | Palme, Rupert | Eccard, Jana Anja
Artificial light at night (ALAN) is spreading worldwide and thereby is increasingly interfering with natural dark-light cycles. Meanwhile, effects of very low intensities of light pollution on animals have rarely been investigated. We explored the effects of low intensity ALAN over seven months in eight experimental bank vole (Myodes glareolus) populations in large grassland enclosures over winter and early breeding season, using LED garden lamps. Initial populations consisted of eight individuals (32 animals per hectare) in enclosures with or without ALAN. We found that bank voles under ALAN experienced changes in daily activity patterns and space use behavior, measured by automated radiotelemetry. There were no differences in survival and body mass, measured with live trapping, and none in levels of fecal glucocorticoid metabolites. Voles in the ALAN treatment showed higher activity at night during half moon, and had larger day ranges during new moon. Thus, even low levels of light pollution as experienced in remote areas or by sky glow can lead to changes in animal behavior and could have consequences for species interactions.
اظهر المزيد [+] اقل [-]Interactions of polymeric drug carriers with DDT reduce their combined cytotoxicity النص الكامل
2018
Zhang, Xuejiao | Lei, Lei | Zhang, Haiyan | Zhang, Siyu | Xing, Weiwei | Wang, Jin | Li, Haibo | Zhao, Qing | Xing, Baoshan
Attention has been paid to the environmental distribution and fate of nanomedicines. However, their effects on the toxicity of environmental pollutants are lack of knowledge. In this study, the negatively charged poly (ethylene glycol)-b-poly (L-lactide-co-glycolide) (mPEG-PLA) and positively charged polyethyleneimine-palmitate (PEI-PA) nanomicelles were synthesized and served as model drug carriers to study the interaction and combined toxicity with dichlorodiphenyltrichloroethane (DDT). DDT exerted limited effect on the biointerfacial behavior of mPEG-PLA nanomicelles, whereas it significantly mitigated the attachment of PEI-PA nanomicelles on the model cell membrane as monitored by quartz crystal microbalance with dissipation (QCM-D). The cytotoxicity of DDT towards NIH 3T3 cells was greatly decreased by either co-treatment or pre-treatment with the nanomicelles according to the results of real-time cell analysis (RTCA). The cell viability of NIH 3T3 exposed to DDT was increased up to 90% by the co-treatment with mPEG-PLA nanomicelles. Three possible reasons were proposed: (1) decreased amount of free DDT in the cell culture medium due to the partitioning of DDT into nanomicelles; (2) mitigated cellular uptake of nanomicelle-DDT complexes due to the complex agglomeration or electrostatic repulsion between complexes and cell membrane; (3) detoxification effect in the lysosome upon endocytosis of nanomicelle-DDT complexes.
اظهر المزيد [+] اقل [-]The role of different functional groups in a novel adsorption-complexation-reduction multi-step kinetic model for hexavalent chromium retention by undissolved humic acid النص الكامل
2018
Zhang, Jia | Yin, Huilin | Chen, Linpeng | Liu, Fei | Chen, Honghan
Undissolved humic acid (HA) has a great retention effect on the migration of hexavalent chromium [Cr(VI)] in soil, and HA functional groups play a predominant role in this process. However, the coupled mode between Cr(VI) retention and HA functional groups reaction is still unclear. In this study, it was found that a fair amount of Cr on HA existed in the forms of ion exchangeable and binding Cr(VI) during the reaction resulting from the ion exchange adsorption and complexation of Cr(VI). According to the results of two-dimensional correlation spectroscopic analysis (2DCOS), HA functional groups participated in the reaction with Cr(VI) in the order of carboxyl ≈ chelated carboxyl > phenol > polysaccharide > methyl, and all the functional groups were more likely to be located at aromatic domains. Based on the results of XPS spectra, rather than to be oxidized by Cr(VI), carboxyl more tended to be complexed by chromium, which is regarded as the precondition for Cr(VI) reduction. Phenol, polysaccharide and methyl with distinct reaction activities successively acted as major electron donors for Cr(VI) reduction in different reaction stages. Consequently, it was determined that the retention of Cr(VI) by undissolved HA followed an adsorption-complexation-reduction mechanism, and based on this, a multi-step kinetic model with multiple types of complexation/reduction sites was developed to simulate the retention processes resulting in a much better fitting effect (R2 > 0.99) compared with traditional first-order and second-order kinetic models (R2 < 0.95). This demonstrated that the multi-step kinetic model is of great potential in accurately simulating the migration and transformation of Cr(VI) in soil environment.
اظهر المزيد [+] اقل [-]Abiotic formation of organoiodine compounds by manganese dioxide induced iodination of dissolved organic matter النص الكامل
2018
Hao, Zhineng | Wang, Juan | Yin, Yongguang | Cao, Dong | Liu, Jingfu
Iodination of dissolved organic matter (DOM) initiated by manganese oxide may represent an important source of organoiodine compounds (OICs) for iodide-containing waters. Here, Suwannee River natural organic matter was selected as model DOM, the OICs formation in simulated freshwater samples from iodinated DOM induced by manganese oxide (δ-MnO2) was investigated at different pHs and concentrations of iodide and δ-MnO2 by using negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS). While no OIC was observed in DOM control samples without δ-MnO2, hundreds of OICs were detected in the presence of δ-MnO2, suggesting the enhanced role of δ-MnO2 played in DOM iodination. The relative abundance was defined as the value of dividing the peak intensity of OICs by the highest m/z peak intensity constantly occurred in each mass spectrum, and selected as a parameter for partly reflecting the real level of OICs. The relative abundance of most OICs were around or greater than 1%, and several OICs with higher relative abundance were identified as diiodo-5-hydroxy-4-cyclopentene-1,3-dione, diiodomethane and diiodoacetic acid. The numbers of the formed OICs increased with the increase concentrations of iodide/δ-MnO2 and the decrease of pH, and nearly all OICs formed at lower levels of iodide/δ-MnO2 and/or higher pH were overlapped by that at higher levels of iodide/δ-MnO2 and/or lower pH, indicating the reliability of FT-ICR MS analysis techniques and data processing method. The OICs were formed mainly from the iodination of typical lignin-like and tannin-like compounds, as well as the precursor compounds with higher relative abundance through substitution reactions. Our findings demonstrate that the OICs formation by δ-MnO2-initiated DOM iodination should receive more attention and the concentration, exact structure and toxicity of the OICs need to be further investigated.
اظهر المزيد [+] اقل [-]Polystyrene microplastics induce microbiota dysbiosis and inflammation in the gut of adult zebrafish النص الكامل
2018
Jin, Yuanxiang | Xia, Jizhou | Pan, Zihong | Yang, Jiajing | Wang, Wenchao | Fu, Zhengwei
Microplastic (MP) are environmental pollutants and have the potential to cause varying degrees of aquatic toxicity. In this study, the effects on gut microbiota of adult male zebrafish exposed for 14 days to 100 and 1000 μg/L of two sizes of polystyrene MP were evaluated. Both 0.5 and 50 μm-diameter spherical polystyrene MP increased the volume of mucus in the gut at a concentration of 1000 μg/L (about 1.456 × 10¹⁰ particles/L for 0.5 μm and 1.456 × 10⁴ particles/L for 50 μm). At the phylum level, the abundance of Bacteroidetes and Proteobacteria decreased significantly and the abundance of Firmicutes increased significantly in the gut after 14-day exposure to 1000 μg/L of both sizes of polystyrene MP. In addition, high throughput sequencing of the 16S rRNA gene V3-V4 region revealed a significant change in the richness and diversity of microbiota in the gut of polystyrene MP-exposed zebrafish. A more in depth analysis, at the genus level, revealed that a total of 29 gut microbes identified by operational taxonomic unit (OTU) analysis were significantly changed in both 0.5 and 50 μm-diameter polystyrene MP-treated groups. Moreover, it was observed that 0.5 μm polystyrene MP not only increased mRNA levels of IL1α, IL1β and IFN but also their protein levels in the gut, indicating that inflammation occurred after polystyrene MP exposure. Our findings suggest that polystyrene MP could induce microbiota dysbiosis and inflammation in the gut of adult zebrafish.
اظهر المزيد [+] اقل [-]Indirect N2O emissions with seasonal variations from an agricultural drainage ditch mainly receiving interflow water النص الكامل
2018
Tian, Linlin | Akiyama, Hiroko | Zhu, Bo | Shen, Xi
Nitrogen (N)-enriched leaching water may act as a source of indirect N₂O emission when it is discharged to agricultural drainage ditches. In this study, indirect N₂O emissions from an agricultural drainage ditch mainly receiving interflow water were measured using the static chamber-gas chromatography technique during 2012–2015 in the central Sichuan Basin in southwestern China. We found the drainage ditch was a source of indirect N₂O emissions contributing an inter-annual mean flux of 6.56 ± 1.12 μg N m⁻² h⁻¹ and a mean indirect N₂O emission factor (EF₅g) value of 0.03 ± 0.003%. The mean EF₅g value from literature review was 0.51%, which was higher than the default EF₅g value (0.25%) proposed by the Intergovernmental Panel on Climate Change (IPCC) in 2006. Our study demonstrated that, more in situ observations of N₂O emissions as regards N leaching are required, to account for the large variation in EF₅g values and to improve the accuracy and confidence of the default EF₅g value. Indirect N₂O emissions varied with season, higher emissions occurred in summer and autumn. These seasonal variations were related to drainage water NO₃⁻-N concentration, temperature, and precipitation. Our results showed that intensive precipitation increased NO₃⁻-N concentrations and N₂O emissions, and when combined with warmer water temperatures, these may have increased the denitrification rate that led to the higher summer and autumn N₂O emissions in the studied agricultural drainage ditch.
اظهر المزيد [+] اقل [-]Metal(loid)-resistant bacteria reduce wheat Cd and As uptake in metal(loid)-contaminated soil النص الكامل
2018
Wang, Xiao-Han | Luo, Wei-Wei | Wang, Qi | He, Lin-Yan | Sheng, Xia-Fang
This study characterized the effect of the metal(loid)-resistant bacteria Ralstonia eutropha Q2-8 and Exiguobacterium aurantiacum Q3-11 on Cd and As accumulation in wheat grown in Cd- and As-polluted soils (1 mg kg−1 of Cd + 40 mg kg−1 of As and 2 mg kg−1 of Cd + 60 mg kg−1 of As). The influence of strains Q2-8 and Q3-11 on water-soluble Cd and As and NH4+concentration and pH in the soil filtrate were also analyzed. Inoculation with these strains significantly reduced wheat plant Cd (12–32%) and As (9–29%) uptake and available Cd (15–28%) and As (22–38%) contents in rhizosphere soils compared to the controls. Furthermore, these strains significantly increased the relative abundances of the arsM bacterial As metabolism gene and of Fe- and Mn-oxidizing Leptothrix species in rhizosphere soils. Notably, these strains significantly reduced water-soluble Cd and As concentrations and increased pH and NH4+ concentration in the soil filtrate. These results suggest that these strains increased soil pH and the abundance of genes possibly involved in metal(loid) unavailability, resulting in reduced wheat Cd and As accumulation and highlight the possibility of using bacteria for in situ remediation and safe production of wheat or other food crops in metal(loid)-polluted soils.
اظهر المزيد [+] اقل [-]Rapid debromination of polybrominated diphenyl ethers (PBDEs) by zero valent metal and bimetals: Mechanisms and pathways assisted by density function theory calculation النص الكامل
2018
Wang, Rui | Tang, Ting | Lu, Guining | Huang, Kaibo | Yin, Hua | Lin, Zhang | Wu, Fengchang | Dang, Zhi
Polybrominated diphenyl ethers (PBDEs) undergo debromination when they were exposed in zerovalent metal or bimetallic systems. Yet their debromination pathways and mechanisms in these systems were not well understood. Here we reported the debromination pathways of three BDE congeners (BDE-21, 25 and 29) by nano-zerovalent iron (n-ZVI). All these BDE congeners have three bromine substituents that were located in ortho-, meta- and para-positions. Results demonstrated that BDE-21, 25 and 29 preferentially debrominate meta-, ortho- and para-bromines, respectively, suggesting that bromine substituent at each position (i.e. ortho-, meta- or para-) of PBDEs can be preferentially removed. Singly occupied molecular orbitals of BDE anions are well correlated with their actual debromination pathways, which successfully explain why these BDE congeners exhibit certain debromination pathways in n-ZVI system. In addition, microscale zerovalent zinc (m-ZVZ), iron-based bimetals (Fe/Ag and Fe/Pd) were also used to debrominate PBDEs, with BDE-21 as target pollutant. We found that the debromination pathways of BDE-21 in m-ZVZ and Fe/Ag systems are the same to those in n-ZVI system, but were partially different from those in Fe/Pd systems. The debromination of BDE-21 in Pd-H2 system as well as the solvent kinetic isotope effect in single metal and bimetallic systems suggests that H atom transfer is the dominant mechanism in Fe/Pd system, while e-transfer is still the dominant mechanism in Fe/Ag system.
اظهر المزيد [+] اقل [-]RETRACTED: Trends in bromide wet deposition concentrations in the contiguous United States, 2001–2016 النص الكامل
2018
Wetherbee, Gregory A. | Lehmann, Christopher M.B. | Kerschner, Brian M. | Ludtke, Amy S. | Green, Lee A. | Rhodes, Mark F.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).This article has been retracted at the request of the authors due to the results of a detailed investigation of the data quality conducted by the Central Analytical Laboratory (CAL) after relocation to the University of Wisconsin (UW) – Wisconsin State Laboratory of Hygiene. Using a subset of the 30 samples with the highest bromide ion (Br-) concentrations, the CAL at UW found 6 samples that could not be verified or were incorrect. Because the extent of the incorrect data is unknown, the NADP Executive Committee voted unanimously in May 2019 to discontinue public access to these data, and they decided to sequester all Br- data prior to June 2018. These issues were not obvious to the authors when the paper was written.The authors apologize for the inconvenience caused.
اظهر المزيد [+] اقل [-]Detection and attribution of nitrogen runoff trend in China's croplands النص الكامل
2018
Hou, Xikang | Zhan, Xiaoying | Zhou, Feng | Yan, Xiaoyuan | Gu, Baojing | Reis, Stefan | Wu, Yali | Liu, Hongbin | Piao, Shilong | Tang, Yanhong
Reliable detection and attribution of changes in nitrogen (N) runoff from croplands are essential for designing efficient, sustainable N management strategies for future. Despite the recognition that excess N runoff poses a risk of aquatic eutrophication, large-scale, spatially detailed N runoff trends and their drivers remain poorly understood in China. Based on data comprising 535 site-years from 100 sites across China's croplands, we developed a data-driven upscaling model and a new simplified attribution approach to detect and attribute N runoff trends during the period of 1990–2012. Our results show that N runoff has increased by 46% for rice paddy fields and 31% for upland areas since 1990. However, we acknowledge that the upscaling model is subject to large uncertainties (20% and 40% as coefficient of variation of N runoff, respectively). At national scale, increased fertilizer application was identified as the most likely driver of the N runoff trend, while decreased irrigation levels offset to some extent the impact of fertilization increases. In southern China, the increasing trend of upland N runoff can be attributed to the growth in N runoff rates. Our results suggested that increased SOM led to the N runoff rate growth for uplands, but led to a decline for rice paddy fields. In combination, these results imply that improving management approaches for both N fertilizer use and irrigation is urgently required for mitigating agricultural N runoff in China.
اظهر المزيد [+] اقل [-]