خيارات البحث
النتائج 431 - 440 من 6,473
Aqua regia digestion cannot completely extract Hg from biochar: A synchrotron-based study
2020
Liu, Wenfu | Feng, Yu | Zhong, Huan | Ptacek, Carol | Blowes, David | Liu, Yingying | Finfrock, Y Zou | Liu, Peng | Wang, Sheng
Mercury (Hg) is commonly extracted from solid phase samples using aqua regia for total Hg (tHg) analysis. However, uncertainties exist regarding the complete extraction of Hg by aqua regia, especially from carbonaceous materials. To investigate whether aqua regia can completely extract Hg from biochars, batch-style experiments were carried out to evaluate extraction efficiency of aqua regia with respect to Hg-loaded biochar and to characterize the residual Hg speciation and spatial distribution. Different types of biochars (raw, FeCl₃-modified, and FeSO₄-modified, prepared at different temperatures) were reacted with Hg-spiked solution before the digestion experiments. Adsorption analyses indicate the biochars were successfully loaded with Hg and that the Hg content was higher in biochars pyrolyzed at higher temperature (900 versus 300 or 600 °C). The results of digestion experiments indicate Hg could not be completely extracted from the biochars tested, with a greater percentage of residual Hg in biochars pyrolyzed at 600 (60 ± 15%) and 900 (75 ± 22%) than 300 °C (7 ± 2%). Furthermore, the fraction of residual Hg in FeSO₄-modified biochars after aqua regia digestion was significantly lower than in FeCl₃-modified and unmodified biochars. Confocal micro-X-ray fluorescence imaging (CMXRFI) showed residual Hg in biochars is concentrated on surfaces prior to digestion, but more homogeneously distributed after digestion, which indicates Hg on biochar surface is more easily digested. Hg extended X-ray absorption fine structure (EXAFS) spectra modelling showed residual Hg in biochars mainly exists as Hg(II)–Cl. These results indicate extra caution should be paid for tHg determinations using aqua regia digestion method in soil (especially in forest), sediment, and peat samples containing black carbon, activated carbon, or biochar.
اظهر المزيد [+] اقل [-]Application of advanced HepG2 3D cell model for studying genotoxic activity of cyanobacterial toxin cylindrospermopsin
2020
Hercog, Klara | Štampar, Martina | Štern, Alja | Filipič, Metka | Žegura, Bojana
Cylindrospermopsin (CYN) is an emerging cyanotoxin increasingly being found in freshwater cyanobacterial blooms worldwide. Humans and animals are exposed to CYN through the consumption of contaminated water and food as well as occupational and recreational water activities; therefore, it represents a potential health threat. It exhibits genotoxic effects in metabolically active test systems, thus it is considered as pro-genotoxic. In the present study, the advanced 3D cell model developed from human hepatocellular carcinoma (HepG2) cells was used for the evaluation of CYN cyto-/genotoxic activity. Spheroids were formed by forced floating method and were cultured for three days under static conditions prior to exposure to CYN (0.125, 0.25 and 0.5 μg/mL) for 72 h. CYN influence on spheroid growth was measured daily and cell survival was determined by MTS assay and live/dead staining. The influence on cell proliferation, cell cycle alterations and induction of DNA damage (γH2AX) was determined using flow cytometry. Further, the expression of selected genes (qPCR) involved in the metabolism of xenobiotics, proliferation, DNA damage response, apoptosis and oxidative stress was studied. Results revealed that CYN dose-dependently reduced the size of spheroids and affected cell division by arresting HepG2 cells in G1 phase of the cell cycle. No induction of DNA double strand breaks compared to control was determined at applied conditions. The analysis of gene expression revealed that CYN significantly deregulated genes encoding phase I (CYP1A1, CYP1A2, CYP3A4, ALDH3A) and II (NAT1, NAT2, SULT1B1, SULT1C2, UGT1A1, UGT2B7) enzymes as well as genes involved in cell proliferation (PCNA, TOP2α), apoptosis (BBC3) and DNA damage response (GADD45a, CDKN1A, ERCC4). The advanced 3D HepG2 cell model due to its more complex structure and improved cellular interactions provides more physiologically relevant information and more predictive data for human exposure, and can thus contribute to more reliable genotoxicity assessment of chemicals including cyanotoxins.
اظهر المزيد [+] اقل [-]Investigation of the effects of dichlorvos poisoning on AMPK signaling pathway in chicken brain tissues
2020
Xiao, Yanyu | Zheng, Xibang | Li, Guyue | Zhou, Changming | Wu, Cong | Xu, Zheng | Hu, Guoliang | Guo, Xiaoquan | Li, Lin | Cao, Huabin | Latigo, Vincent | Liu, Ping
Dichlorvos is a common crop insecticide widely used by people which causes extensive and serious environmental pollution. However, it has been shown that organophosphorus poisoning causes energy metabolism and neural disorders. The overall purpose of this study was to investigate the damage to brain tissue and the changes in AMPK signaling pathway-related gene expression after dichlorvos poisoning in chickens. White-feathered broiler chickens, as the research subjects of this experiment, were divided into three groups: control group, low-dose group (77.5% dichlorvos at 1.13 mg/kg dose) and high-dose group (77.5% dichlorvos at 10.2 mg/kg dose). Clinical symptoms were observed after modeling, and an integrative analysis was conducted using HE staining microscopy, immune-histochemical microscopy, electron microscopy and PCR arrays. The results showed that the high-dose group had more obvious dyspnea, salivation, convulsion and other neurological phenomena. Pathological sections showed that nuclear disintegration of neurons was most obvious in the low-dose group, and apoptosis of brain cells was most obvious in the high-dose group, and the mitochondrial structure was destroyed in the two poisoned group, i.e. low-dose group and high-dose group. PCR arrays showed that AMPK signaling pathway was inhibited and the expressions of genes involved in energy metabolism (ACACA and PRKAA1) were significantly changed. Furthermore, genes associated with protein synthesis (EIF4EBP1) were significantly upregulated. FASN and HMGCR expressions were significantly increased. There were significant changes in the expressions of cell cycle-related genes (STK11, TP53 and FOXO3). Organophosphate poisoning can cause a lot of nuclear disintegration of brain neurons, increases cell apoptosis, disrupts the energy metabolism of mitochondrial structure, and inhibits the AMPK signaling pathway. These results provide a certain idea and basis for studying the mechanism of AMPK signaling after organophosphorus poisoning and provide a research basis for the prevention and treatment of organophosphorus poisoning.
اظهر المزيد [+] اقل [-]Toxicity of different polycyclic aromatic hydrocarbons (PAHs) to the freshwater planarian Girardia tigrina
2020
Simão, Fátima C.P. | Gravato, Carlos | Machado, Ana Luísa | Soares, Amadeu M.V.M. | Pestana, João L.T.
Freshwater planarians have been gaining relevance as experimental animals for numerous research areas given their interesting features, such as high regeneration potential, shared features with the vertebrates’ nervous system or the range of endpoints that can be easily evaluated in response to contaminants. Ecotoxicological research using these animals has been steadily increasing in the past decades, as planarians’ potentialities for this research area are being recognized. In this work, we used polycyclic aromatic hydrocarbons (PAHs) as model contaminants and evaluated effects of exposure to phenanthrene, pyrene and benzo[a]pyrene (B[a]P) in planarians. The freshwater planarian Girardia tigrina was chosen and mortality, cephalic regeneration (during and post-exposure), behavioral endpoints and presence of PAHs in tissues, were evaluated. Mortality was only observed in planarians exposed to phenanthrene, with an estimated LC₅₀ of 830 μg L⁻¹. Results indicate that planarian behavioral endpoints were very sensitive in response to sub-lethal concentrations of PAHs, showing a greater sensitivity towards B[a]P and pyrene. Briefly, post-exposure locomotion and post-exposure feeding were significantly impaired by sub-lethal concentrations of all compounds, whereas regeneration of photoreceptors was only significantly delayed in planarians exposed to pyrene. Moreover, levels of PAH-type compounds in planarian tissues followed a concentration-dependent increase, showing uptake of compounds from experimental solutions. The present results highlight the importance of studying alternative and complementary endpoints, such as behavior, not only because these may be able to detect effects at lower levels of contamination, but also due to their ecological relevance. The simplicity of evaluating a wide range of responses to contaminants further demonstrates the utility of freshwater planarians for ecotoxicological research.
اظهر المزيد [+] اقل [-]Seasonal factors driving biochemical biomarkers in two fish species from a subtropical reservoir in southern Brazil: An integrated approach
2020
Blank do Amaral, Aline Monique | Kuhn de Moura, Letícia | de Pellegrin, Dionatan | Guerra, Luciana Joner | Cerezer, Felipe Osmari | Saibt, Nathália | Prestes, Osmar Damian | Zanella, Renato | Loro, Vania Lucia | Clasen, Barbara
Reservoirs are lentic man-made waterbodies resulting from river damming processes. Pollutants coming from adjacent areas can accumulate in the water and sediment of these modified freshwater environments. Fish are often found in reservoirs occupying several trophic niches. Biochemical biomarkers are early warning signals of environmental disturbance to an organism. It is essential to understand how pollutants, abiotic variables and biochemical biomarker responses behave throughout the seasons to implement biomonitoring programs. Loricariichthys anus and Geophagus brasiliensis were collected, and abiotic variables were seasonally measured for one year, at six sampling sites in Passo Real reservoir, in a subtropical region of Southern Brazil. Biochemical biomarkers were analyzed in four tissues of both fish species, as well as metal and pesticide concentrations in the reservoir’s water and sediment. Redundancy analysis (RDA) was carried out to find the temporal relationship between biomarkers and environmental variables. RDA has clearly shown the separation of seasons for both species. Azoxystrobin, simazine and propoxur were the pesticides mostly contributing to the variation, whereas metals had lesser contribution to it. Seasonality appears to be the main factor explaining biomarkers’ variability. PERMANOVA has confirmed the effect of temperature and dissolved oxygen on biomarkers of both fish species. Thus, it is hard to differentiate if the fluctuation in biomarkers’ responses only reflects the normal state of organisms or it is a biological consequence from negative effects of fish exposure to several types of pollution (sewage, pesticides, and fertilizers) entering this aquatic system. In this study, to circumvent the seasonality issue on biomonitoring, the analysis of biomarkers on these fish should not be carried out in organs directly affected by temperature (such as liver and gills), or during reproduction periods (mainly in Spring).
اظهر المزيد [+] اقل [-]Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major)
2020
Dominoni, Davide | Smit, Judith A.H. | Visser, Marcel E. | Halfwerk, Wouter
Urbanisation is increasing globally at a rapid pace. Consequently, wild species face novel environmental stressors associated with urban sprawl, such as artificial light at night and noise. These stressors have pervasive effects on the behaviour and physiology of many species. Most studies have singled out the impact of just one of these stressors, while in the real world they are likely to co-occur both temporally and spatially, and we thus lack a clear understanding of the combined effect of anthropogenic stressors on wild species. Here, we experimentally exposed captive male great tits (Parus major) to artificial light at night and 24 h noise in a fully factorial experiment. We then measured the effect of both these stressors on their own and their combination on the amount and timing of activity patterns. We found that both light and noise affected activity patterns when presented alone, but in opposite ways: light increased activity, particularly at night, while noise reduced it, particularly during the day. When the two stressors were combined, we found a synergistic effect on the total activity and the nighttime activity, but an antagonistic effect on daytime activity. The significant interaction between noise and light treatment also differed among forest and city birds. Indeed, we detected a significant interactive effect on light and noise on daytime, nighttime, dusktime and offset of activity of urban birds, but not of forest birds. These results suggest that both artificial light at night and anthropogenic noise can drive changes in activity patterns, but that the specific impacts depend on the habitat of origin. Furthermore, our results demonstrate that co-occurring exposure to noise and light can lead to a stronger impact at night than predicted from the additive effects and thus that multisensory pollution may be a considerable threat for wildlife.
اظهر المزيد [+] اقل [-]High and low temperatures aggravate airway inflammation of asthma: Evidence in a mouse model
2020
Deng, Linjing | Ma, Ping | Wu, Yang | Ma, Yongsheng | Yang, Xu | Li, Yuguo | Deng, Qihong
Epidemiology suggests ambient temperature is the triggers and potential activator of asthma. The role of high and low temperatures on airway inflammation of asthma, and the underlying molecular mechanism are not yet understood. A mouse model of asthma was adopted in our experiment. The BALB/c mice were exposed at different temperature for 4 h (2 h in the morning and 2 h in the afternoon) on weekday. The exposure temperatures were 10 °C, 24 °C and 40 °C. Ovalbumin (OVA) was used to sensitize the mice on days 14, 18, 22, 26, and 30, followed by an aerosol challenge for 30 min from day 32–38. After the final OVA challenge, lung function, serum protein and pulmonary inflammation were assessed. Comparing the OVA with the saline group at 24 °C, we saw a significant increase in: serum Total-IgE (p < 0.05); OVA-sIgE (p < 0.01); IL-4 (p < 0.05); IL-1β (p < 0.01); IL-6 (p < 0.01); TNF-α (p < 0.01); and the ratio of IL-4/IFN-γ (p < 0.01). At the same time, there was a significant decrease in IFN-γ (p < 0.01). As the temperature increase, there is a U shape for immune proteins and pro-inflammatory factors with a peak value at 24 °C, exception for IFN-γ (inverted U-shape). After the high and low temperature exposure, the Ri and Re increased significantly, while Cldyn decreased significantly compared with the 24 °C group. Histopathological analysis of the OVA groups showed airway remodeling, airway wall thickening and deforming, and subepithelial fibrosis. More obvious changes were found in the high and low temperature exposure groups. The immunohistochemistry suggested that TRPs changed with temperatures. High and low temperatures can aggravate airway inflammation in a mouse model of asthma. TRPs play an important role in temperature aggravation of allergic asthma. The results suggest that asthmatics should avoid exposure to high and low temperatures for too long time.
اظهر المزيد [+] اقل [-]Fluoride induced mitochondrial impairment and PINK1-mediated mitophagy in Leydig cells of mice: In vivo and in vitro studies
2020
Liang, Zhen | Gao, Yan | He, Yuyang | Han, Yongli | Manthari, Ram Kumar | Tikka, Chiranjeevi | Chen, Chenkai | Wang, Jundong | Zhang, Jianhai
It is very important to explore the potential harm and underlying mechanism of fluoride due to the extensive distribution and the significant health risks of fluoride in environment. The objective of this study to investigate whether fluoride can induce mitochondrial impairment and mitophagy in testicular cells. For this, 40 male mice were randomly divided into four groups treated with 0, 0.6, 1.2, 2.4 mM NaF deionized water, respectively, for 90 days continuously. The results showed that mitophagy was triggered by F in testicular tissues, especially in the Leydig cells by transmission electron microscopy and mitophagy receptor PHB2 locations by immunofluorescence. Furthermore, TM3 Leydig cells line was employed and treated with 0, 0.125, 0.25, and 0.5 mM NaF for 24 h. The mitochondrial function indicators and mitophagy maker PHB2, COX IV and regulator PINK1 in transcript and protein levels in Leydig cells were examined by the methods of qRT-PCR, western blotting, and immunofluorescence co-localization. The results showed that fluoride decreased the mitochondrial membrane potential with a concomitant increase in the number of lysosomes. Meanwhile, fluoride exposure also increased the expressions of PINK1 and PHB2 in TM3 Leydig cells. These results revealed that fluoride could induce mitochondrial impairment and excessive PINK1/Parkin-mediated mitophagy in testicular cells, especially in Leydig cells, which could contribute to the elucidation of the mechanisms of F-induced male reproductive toxicity.
اظهر المزيد [+] اقل [-]MicroRNA-382-5p is involved in pulmonary inflammation induced by fine particulate matter exposure
2020
Zhang, Xinwei | Zhang, Yanshu | Meng, Qingtao | Sun, Hao | Wu, Shenshen | Xu, Jie | Yun, Jun | Yang, Xi | Li, Bin | Zhu, Hao | Xue, Ling | Li, Xiaobo | Chen, Rui
Exposure to atmospheric particulate matter (PM) has been related to the increasing incidence and mortality of pulmonary diseases, where microRNAs (miRNAs) play significant roles in these biological and pathological processes. In the present study, we found that miR-382-5p played an anti-inflammatory role in pulmonary inflammation induced by fine particulate matter (PM₂.₅) or diesel exhaust particles (DEPs) in vitro and in vivo. The expression level of miR-382-5p was downregulated, while its target gene, namely CXCL12, was elevated in HBE cells after exposure to PM₂.₅ or DEPs. Mechanistically, PM₂.₅ or DEPs exposure increased CXCL12/MMP9 expression via miR-382-5p inhibition, subsequently triggered pulmonary inflammation. Furthermore, antagonizing the function of CXCL12 significantly reduced the expression of MMP9 and local inflammation induced by PM₂.₅ or DEPs. PM₂.₅ or DEPs caused apoptosis and G1 phase arrest could be partially restored by overexpression of miR-382-5p and antagonism of CXCL12. In a murine model, enhanced miR-382-5p expression effectively reduced expression levels of CXCL12, MMP9 and inflammatory cytokines, hereby protected lung tissues against PM₂.₅ or DEPs-induced lesions. Collectively, the miR-382-5p/CXCL12/MMP9 pathway may provide a mechanism, which mediates inflammatory response to PM₂.₅ or DEPs exposure.
اظهر المزيد [+] اقل [-]Effects of different mobile phone UMTS signals on DNA, apoptosis and oxidative stress in human lymphocytes
2020
Gulati, Sachin | Kosik, Pavol | Durdik, Matus | Skorvaga, Milan | Jakl, Lukas | Markova, Eva | Belyaev, Igor
Different scientific reports suggested link between exposure to radiofrequency radiation (RF) from mobile communications and induction of reactive oxygen species (ROS) and DNA damage while other studies have not found such a link. However, the available studies are not directly comparable because they were performed at different parameters of exposure, including carrier frequency of RF signal, which was shown to be a critical for appearance of the RF effects. For the first time, we comparatively analyzed genotoxic effects of UMTS signals at different frequency channels used by 3G mobile phones (1923, 1947.47, and 1977 MHz). Genotoxicity was examined in human lymphocytes exposed to RF for 1 h and 3 h using complimentary endpoints such as induction of ROS by imaging flow cytometry, DNA damage by alkaline comet assay, mutations in TP53 gene by RSM assay, preleukemic fusion genes (PFG) by RT-qPCR, and apoptosis by flow cytometry. No effects of RF exposure on ROS, apoptosis, PFG, and mutations in TP53 gene were revealed regardless the UMTS frequency while inhibition of a bulk RNA expression was found. On the other hand, we found relatively small but statistically significant induction of DNA damage in dependence on UMTS frequency channel with maximal effect at 1977.0 MHz. Our data support a notion that each specific signal used in mobile communication should be tested in specially designed experiments to rule out that prolonged exposure to RF from mobile communication would induce genotoxic effects and affect the health of human population.
اظهر المزيد [+] اقل [-]