خيارات البحث
النتائج 441 - 450 من 5,151
An advanced three-way factor analysis model (SDABB model) for size-resolved PM source apportionment constrained by size distribution of chemical species in source profiles النص الكامل
2018
Liu, Tong | Tian, Yingze | Xue, Qianqian | Wei, Chen | Qian, Yong | Feng, Yinchang
Source samples including crustal dust, cement dust, coal combustion were sampled and ambient samples of PM₂.₅ and PM₁₀ were synchronously collected in Hefei from April to December 2014. The size distributions of the markers in the measured source profiles were incorporated into ME-2 solution to develop a new method, called the SDABB model (an advanced ABB three-way factor analysis model incorporating size distribution information). The performance of this model was investigated using three-way synthetic and ambient dataset. For the synthetic tests, the size distributions of markers estimated by the SDABB model were more consistent with true condition. The AAEs between estimated and observed contributions of the SDABB ranged from 15.2% to 29.0% for PM₁₀ and 19.9%–31.6% for PM₂.₅, which is lower than those of PMF2. For the ambient PM, six source categories were identified by SDABB for both sizes, although the profiles were different. The source contributions were sulphate (33.33% and 24.53%), nitrate and SOC (22.33% and 18.16%), coal combustion (19.01% and 18.23%), vehicular exhaust (12.99% and 12.07%), crustal dust (10.69% and 19.40%) and cement dust (1.65% and 5.39%) for PM₂.₅ and PM₁₀ respectively. In addition, the estimated ratios of Al, Si, Ti and Fe in CRD were 0.76, 0.84, 1.10 and 0.85; those of Al and Si in CC were 0.42 and 0.66; Ca and Si in CD were 0.95 and 1.10; NO₃⁻ and NH₄⁺ in nitrate were 1.11 and 1.01; and SO₄²⁻ and NH₄⁺ in sulphate were 0.96 and 1.16. These modeled ratios were consistent with the measured ratios. The size distribution of contributions also came close to reality. Thus, the advanced SDABB three-way model can better capture the characteristics of sources between sizes by effectively incorporating the size distributions of the markers as physical constraints.
اظهر المزيد [+] اقل [-]Biodegradation of nonylphenol during aerobic composting of sewage sludge under two intermittent aeration treatments in a full-scale plant النص الكامل
2018
Zheng, Guodi | Wang, Tieyu | Niu, Mingjie | Chen, Xijuan | Liu, Changli | Wang, Yuewei | Chen, Tongbin
The urbanization and industrialization of cities around the coastal region of the Bohai Sea have produced large amounts of sewage sludge from sewage treatment plants. Research on the biodegradation of nonylphenol (NP) and the influencing factors of such biodegradation during sewage sludge composting is important to control pollution caused by land application of sewage sludge. The present study investigated the effect of aeration on NP biodegradation and the microbe community during aerobic composting under two intermittent aeration treatments in a full-scale plant of sewage sludge, sawdust, and returned compost at a ratio of 6:3:1. The results showed that 65% of NP was biodegraded and that Bacillus was the dominant bacterial species in the mesophilic phase. The amount of NP biodegraded in the mesophilic phase was 68.3%, which accounted for 64.6% of the total amount of biodegraded NP. The amount of NP biodegraded under high-volume aeration was 19.6% higher than that under low-volume aeration. Bacillus was dominant for 60.9% of the composting period under high-volume aeration, compared to 22.7% dominance under low-volume aeration. In the thermophilic phase, high-volume aeration promoted the biodegradation of NP and Bacillus remained the dominant bacterial species. In the cooling and stable phases, the contents of NP underwent insignificant change while different dominant bacteria were observed in the two treatments. NP was mostly biodegraded by Bacillus, and the rate of biodegradation was significantly correlated with the abundance of Bacillus (r = 0.63, p < 0.05). Under aeration, Bacillus remained the dominant bacteria, especially in the thermal phase; this phenomenon possibly increased the biodegradation efficiency of NP. High-volume aeration accelerated the activity and prolonged the survival of Bacillus. The risk of organic pollution could be decreased prior to sewage sludge reuse in soil by adjusting the ventilation strategies of aerobic compost measurements.
اظهر المزيد [+] اقل [-]Association between organohalogenated pollutants in cord blood and thyroid function in newborns and mothers from Belgian population النص الكامل
2018
Dufour, Patrice | Pirard, Catherine | Seghaye, Marie-Christine | Charlier, Corinne
The last decades have seen the increasing prevalence of thyroid disorders. These augmentations could be the consequence of the increasing contamination of the environment by chemicals that may disrupt the thyroid function. Indeed, in vitro studies have shown that many chemicals contaminating our environment and highlighted in human serum, are able to interfere with the thyroid function. Given the crucial importance of thyroid hormones on neurodevelopment in fetus and newborns, the influence of these pollutants on newborn thyroid homeostasis is a major health concern. Unfortunately, the overall evidence for a deleterious influence of environmental pollutants on thyroid remains poorly studied. Therefore, we assessed the contamination by polychlorinated biphenyls (PCBs), organochlorine pesticides and perfluorinated compounds (PFC) in 221 cord blood samples collected in Belgium between 2013 and 2016. Our results showed that compared to previous studies performed on newborns recruited in Belgium during the two last decades, the present pollutant contamination is declining. Multivariate statistical analyses pointed out a decrease of thyroid stimulating hormone (TSH) level in male newborns with detectable level of 4,4′- dichlorodiphenyldichloroethylene (4,4′-DDE) in comparison with those with no detectable level (p = 0.025). We also highlighted a negative association between perfluorononanoic acid (PFNA) concentration and TSH in male newborns (p = 0.018). Logistic regression showed increased odds ratio for presentation of hypothyroid in mother for each one unit augmentation of log natural concentration of PFOA (OR = 2.30, [1.18–4.5]) and PFOS (OR = 2.03 [1.08–3.83]). Our findings showed that the residual contamination by PFCs and organochlorine pollutants in cord blood are correlated with thyroid hormone in the newborns and the risk of hypothyroid in mothers.
اظهر المزيد [+] اقل [-]Enhanced heterogeneous Fenton-like systems based on highly dispersed Fe0-Fe2O3 nanoparticles embedded ordered mesoporous carbon composite catalyst النص الكامل
2018
Wang, Jing | Liu, Chao | Qi, Junwen | Li, Jiansheng | Sun, Xiuyun | Shen, Jinyou | Han, Weiqing | Wang, Lianjun
Acceleration of Fe³⁺/Fe²⁺ cycle and simultaneous reduction of particle size with enhanced stability is extremely important for iron-based heterogeneous Fenton catalysts. In this work, Fe⁰-Fe₂O₃ composite nanoparticles embedded ordered mesoporous carbon hybrid materials (Fe⁰-Fe₂O₃/OMC) were rationally designed as efficient heterogeneous Fenton catalysts. Because of the confinement and reduction of OMC, highly dispersed Fe⁰-Fe₂O₃ active species with diameter of ∼8 nm were generated by an optimized carbothermic reduction process. In addition, Fe⁰-Fe₂O₃/OMC possesses ordered mesoporous structure with uniform mesopore, high surface area and pore volume. For comparison, two other catalysts, including solely Fe⁰ nanoparticles supported on ordered mesoporous carbon (Fe⁰/OMC) and solely Fe₂O₃ nanoparticles supported on ordered mesoporous carbon (Fe₂O₃/OMC) were also prepared. The Fenton catalytic performance of synthesized catalysts was evaluated by using H₂O₂ as oxidizing agent to degrade Acid Orange II (AOII). The results show that almost 98.1% of 100 mg L⁻¹ AOII was removed by Fe⁰-Fe₂O₃/OMC in condition of neutral pH and nearly room temperature, which is much higher than those of compared catalysts. The enhanced catalytic activity of Fe⁰-Fe₂O₃/OMC for AOII removal is due to the efficient electron transfer between the Fe⁰ and iron oxide and the accelerated Fe³⁺/Fe²⁺ cycle. The stability and reusability of the catalyst was also investigated, which showed a good performance even after five consecutive runs. The as-synthesized catalyst is proved to be an attractive candidate in heterogeneous Fenton chemistry and practical application.
اظهر المزيد [+] اقل [-]A systematic risk characterization related to the dietary exposure of the population to potentially toxic elements through the ingestion of fruit and vegetables from a potentially contaminated area. A case study: The issue of the "Land of Fires" area in Campania region, Italy النص الكامل
2018
Esposito, Francesco | Nardone, Antonio | Fasano, Evelina | Scognamiglio, Gelsomina | Esposito, Daniela | Agrelli, Diana | Ottaiano, Lucia | Fagnano, Massimo | Adamo, Paola | Beccaloni, Eleonora | Vanni, Fabiana | Cirillo Sirri, Teresa
Potentially toxic elements are widespread soil contaminants, whose occurrence could entail a concern for human health upon ingestion of fruit and vegetables harvested in a polluted area. This work set out to evaluate the concentrations of lead and cadmium as well as the levels of thirteen heavy metals for which a limit value is yet to be established by the food safety authorities, in order to perform a risk characterization related to the dietary intake of these metals and to provide a scientific opinion with wider relevance in the light of current worldwide regulatory issues. The sampling consisted of fruit and vegetables grown in a potentially contaminated area of southern Italy due to the illegal dump of hazardous wastes. An evaluation of the dietary exposure through the calculation of the Hazard Index (HI), the Maximum Cumulative Ratio (MCR) and the Target Cancer Risk (TCR) was adopted to this end. The results revealed that about the 30% of samples showed quantifiable levels of chemicals and no significant difference emerged between the potentially polluted area and the nearby cities that were selected as a control landfill site. The overall risk characterization for non-carcinogenic endpoints showed that the HI did not reach unsafe values, except for a small number of samples mainly because of aberrant occurrences and, in any case, the cumulative toxicity was mainly driven by thallium and vanadium. As far as the carcinogenic effects of arsenic are concerned, the distribution of TCR values broadly lay below the safety threshold; a certain percentage of data, however, exceeded this limit and should be taken into account for the enforcement of future regulatory thresholds.
اظهر المزيد [+] اقل [-]Does sulfur fertilizer influence Cu migration and transformation in colloids of soil pore water from the rice (Oryza sativa L.) rhizosphere? النص الكامل
2018
Sun, Lijuan | Xue, Yong | Peng, Cheng | Xu, Chen | Shi, Jiyan
Colloids are ubiquitous in soils, and it has been reported that colloids can act as carriers to increase the mobility of poorly soluble contaminants in subsurface environments. Addition of sulfur (S) fertilizer greatly influences on heavy metal behavior in paddy soil, while the influence of S fertilizer on Cu migration and transformation in colloids of soil pore water has not yet been studied. The influence of S fertilizer (S⁰ and Na₂SO₄) applied in paddy soils on Cu migration and transformation in colloids of soil pore water from the rice rhizosphere region was explored in this study. The speciation of Cu in colloids of soil pore water from the rice rhizosphere region was explored by advanced synchrotron-based X-ray absorption near-edge spectroscopy (XANES) techniques. The morphology of colloids was characterized by field emission scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM-EDX). At a depth of 20 cm, the concentration of Cu in colloids of the rhizosphere soil pore water in the control was 2.4- and 6.5- fold higher than that in treatments of S⁰ and Na₂SO₄, respectively. The colloids in soil pore water were all positively charged, ranging from 2.4 to 7.8 mV, and the size of colloids was 440–740 nm. The proportion of Fe in colloids in the rhizosphere region decreased with S fertilizer application, while the proportions of C and O increased. Sulfur fertilizer application, increased the proportion of Cu-Cysteine, while the proportion of Cu₂S decreased in soil colloids. In conclusion, application of sulfur fertilizer in paddy soil decreased the Cu concentration in soil pore water and colloids of the rhizosphere region, thereby decreasing the vertical migration of Cu in soil pore water.
اظهر المزيد [+] اقل [-]A process-based model for pentachlorophenol dissipation in a flooded paddy soil النص الكامل
2018
Ying, Shanshan | Li, Jia | Lin, Jiajiang | He, Yan | Wu, Laosheng | Zeng, Lingzao
Process-based models have been widely used for predicting environmental fate of contaminants. Nevertheless, accurate modeling of pentachlorophenol (PCP) dissipation in soils at the millimeter-scale remains a challenge due to the scarcity of observation data and uncertainty associated with model assumptions and estimation of the model parameters. To provide quantitative analysis of PCP-dissipation at the anaerobic/aerobic interface of a rhizobox experiment, this study implemented Bayesian parameter estimation for a process-based reactive chemical transport model. The model considered the main transport and transformation processes of chemicals including diffusion, sorption and degradation. The contributions of the processes to PCP dissipation were apportioned both in space and time. Using the maximum-a-posteriori (MAP) estimation of parameters, our model fitted the experimental data better compared with the previous work. Our results indicated that the most reactive zone for PCP dissipation occurred in the layer of 0–2.4 mm where degradation in solid phase dominated the PCP dissipation, while upward diffusion was the main mechanism for the reduction of PCP concentration in deeper layer (2.4–4.8 mm). By considering the coupled reactive transport of PCP and Cl⁻, the average degrees of PCP dechlorination in each layer were estimated from corresponding total concentrations of PCP and Cl⁻. The degrees of PCP dechlorination in the ponding water and the top layer of soil profile were highest, while 2,3,4,5- TeCP and 3,4,5- TCP were identified as the main dechlorination products in the soil. This study demonstrated that combining Bayesian estimation with process-based reactive chemical transport model can provide more insights of PCP dissipation at the millimeter-scale. This approach can help to understand complex dissipation mechanisms for other contaminants.
اظهر المزيد [+] اقل [-]Toxicoproteomic analysis of human lung epithelial cells exposed to steel industry ambient particulate matter (PM) reveals possible mechanism of PM related carcinogenesis النص الكامل
2018
Centilkumār, Es. | Muthuselvam, P. | Pugalenthi, V. | Subramanian, N. | Ramkumar, K.M. | Suresh, T. | Suzuki, T. | Rajaguru, P.
Toxicoproteomic analysis of steel industry ambient particulate matter (PM) that contain high concentrations of PAHs and metals was done by treating human lung cancer cell-line, A549 and the cell lysates were analysed using quantitative label-free nano LC-MS/MS. A total of 18,562 peptides representing 1576 proteins were identified and quantified, with 196 proteins had significantly altered expression in the treated cells. Enrichment analyses revealed that proteins associated to redox homeostsis, metabolism, and cellular energy generation were inhibited while, proteins related to DNA damage and repair and other stresses were over expressed. Altered activities of several tumor associated proteins were observed. Protein-protein interaction network and biological pathway analysis of these differentially expressed proteins were carried out to obtain a systems level view of proteome changes. Together it could be inferred that PM exposure induced oxidative stress which could have lead into DNA damage and tumor related changes. However, lowering of cellular metabolism, and energy production could reduce its ability to overcome these stress. This kind of disequilibrium between the DNA damage and ability of the cells to repair the DNA damage may lead into genomic instability that is capable of acting as the driving force during PM induced carcinogenesis.
اظهر المزيد [+] اقل [-]Pretreatment with propidium monoazide/sodium lauroyl sarcosinate improves discrimination of infectious waterborne virus by RT-qPCR combined with magnetic separation النص الكامل
2018
Lee, Hae-Won | Lee, Hee-Min | Yoon, So-Ra | Kim, Sung Hyun | Ha, Ji-Hyoung
RT-qPCR allows sensitive detection of viral particles of both infectious and noninfectious viruses in water environments, but cannot discriminate non-infectious from infectious viruses. In this study, we aimed to optimize RT-qPCR-based detection of chlorine-inactivated human norovirus (NoV) and pepper mild mottle virus (PMMoV) in suspension by pretreatment with an optimal combination of a monoazide and a detergent that can efficiently penetrate damaged viral capsids. Four methods were compared to determine the efficacy of chlorine disinfection (at 1, 3, and 5 min mg/L): (A) RT-qPCR alone, (B) RT-qPCR assay preceded by magnetic bead separation for enrichment of viral particles (MBS-RT-qPCR), (C) MBS-RT-qPCR assay with pretreatment with propidium monoazide (PMA-MBS-RT-qPCR), and (D) PMA-MBS-RT-qPCR assay with pretreatment with sodium lauroyl sarcosinate (INCI-PMA-MBS-RT-qPCR). On the basis of a PMA optimization assay, 200 and 300 μM PMA were used in subsequent experiments for NoV GII.4 and PMMoV, respectively. Optimal INCI concentrations, having minimal influence on NoV GII.4 and PMMoV, were found to be 0.5% and 0.2% INCI, respectively. For NoV GII.4, there were significant differences (P < 0.05) in log₁₀ genome copies between the PMA-treated and the INCI + PMA-treated samples (log₁₀ genome copies differed by 1.11 and 0.59 log₁₀ for 3 and 5 min mg/L of chlorine, respectively). For PMMoV, INCI induced differences in log₁₀ genome copies of 0.92, 1.18, and 1.86, for 1, 3, and 5 min mg/L of chlorine, respectively. Overall, the results of this study indicate that an optimal combination of PMA and INCI could be very useful for evaluating disinfection methods in water treatment strategies.
اظهر المزيد [+] اقل [-]The interaction between particulate organic matter and copper, zinc in paddy soil النص الكامل
2018
Shi, Jiyan | Wu, Qianhua | Zheng, Cuiqing | Yang, Jianjun
Particulate organic matter (POM) acts as a metals sink in soil, but only a few studies focused on the interaction of POM and heavy metals in paddy soil. The aim of this study is to investigate the interaction between POM and Copper (Cu)/Zinc (Zn). Two levels of Cu (100, 400 mg kg⁻¹) and Zn (250, 500 mg kg⁻¹) were used in a soil culture experiment. Our results showed that POM was porous structure and varied in size. Hydroxyl and carboxyl involved in POM adsorption of Cu and Zn. Rhizosphere effects roughen the surface of POM and enhanced the capacity of POM on heavy metals absorption. Cu-humic (26.2–33.9%) and Cu-citrate (38.5–42.4%) were dominated in POM, and Cu-goethite (41.7–57.7%), Cu-sulphide (6.6–27.6%) was dominated in soil. Rhizosphere effects decreased the proportion of organic-bond Cu along with the increasing the proportion of Cu-sulphide in POM. Addition of Cu and Zn inhibited the degradation of POM but rhizosphere effects promoted. Carbon content was increased in POM by heavy metal and rhizosphere effects. Our findings indicated that POM tended to retain the heavy metals in soil and heavy metals inhibited the degradation of POM, however, rhizosphere effects decreased the stability of POM-metals interactions.
اظهر المزيد [+] اقل [-]