خيارات البحث
النتائج 441 - 450 من 7,351
The effects of air pollutants exposure on the transmission and severity of invasive infection caused by an opportunistic pathogen Streptococcus pyogenes النص الكامل
2022
Zhi, Yong | Chen, Xinyu | Cao, Guangxu | Chen, Fengjia | Seo, Ho Seong | Li, Fang
Currently, urbanization is associated with an increase in air pollutants that contribute to invasive pathogen infections by altering the host's innate immunity and antimicrobial resistance capability. Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is a gram-positive opportunistic pathogen that causes a wide range of diseases, especially in children and immunosuppressed individuals. Diesel exhaust particle (DEP), a significant constituent of particulate matter (PM), are considered a prominent risk factor for respiratory illness and circulatory diseases worldwide. Several clinical and epidemiological studies have identified a close association between PM and the prevalence of viral and bacterial infections. This study investigated the role of DEP exposure in increasing pulmonary and blood bacterial counts and mortality during GAS M1 strain infection in mice. Thus, we characterized the upregulation of reactive oxygen species production and disruption of tight junctions in the A549 lung epithelial cell line due to DEP exposure, leading to the upregulation of GAS adhesion and invasion. Furthermore, DEP exposure altered the leukocyte components of infiltrated cells in bronchoalveolar lavage fluid, as determined by Diff-Quik staining. The results highlighted the DEP-related macrophage dysfunction, neutrophil impairment, and imbalance in pro-inflammatory cytokine production via the toll-like receptor 4/mitogen-activated protein kinase signaling axis. Notably, the tolerance of the GAS biofilms toward potent antibiotics and bacterial resistance against environmental stresses was also significantly enhanced by DEP. This study aimed to provide a better understanding of the physiological and molecular interactions between exposure to invasive air pollutants and susceptibility to invasive GAS infections.
اظهر المزيد [+] اقل [-]Systematic assessment of data quality and quality assurance/quality control (QA/QC) of current research on microplastics in biosolids and agricultural soils النص الكامل
2022
Ziajahromi, Shima | Leusch, Frederic D.L.
Although a growing number of studies have reported microplastics (MPs) in biosolids and soils, there are significant differences in the concentrations found across different regions worldwide. This has raised questions about the quality of studies due to a lack of standardized sampling and analysis methods for detecting MPs in such complex samples. In this study, we applied a systematic quantitative literature review (SQLR) methodology to analyze studies reporting MPs in sludge/biosolids and agricultural soils. We also assessed the quality of individual studies on MPs in sludge/biosolids and soils based on the inclusion of quality assurance/quality control (QA/QC) procedures. There is limited understanding about MPs in soils with a history of biosolid application with only 9% of publications reporting MPs in biosolid-amended soil. There was almost eight orders of magnitude difference (3.4 × 10⁻⁵ to 9.4 × 10³ particles/g) between the highest concentrations of MPs in sludge/biosolid samples compared to the lowest virgin soil samples. The literature shows a consistency in the polymer types (polyester, PP and PE) and morphotypes (fibres and fragments) of MPs most frequently detected in biosolids and soils, suggesting a potential role of biosolids in soils MP pollution. Despite the large variations in the sizes of MPs, there was a negative correlation between the lowest size detected and concentrations reported. This indicates that current concentrations of MPs are influenced by the detection size. Our assessment shows that the majority of studies to-date lack critical QA/QC measures, particularly field blank, positive control and method validation. This highlights an urgent need for quality improvement of future research in this field to produce reliable data, ultimately crucial to assess the risk of MPs and derive suitable environmental guidelines. It is recommended that MPs studies methodically include QA/QC protocols at every step of the process to ensure the integrity of the data that is published.
اظهر المزيد [+] اقل [-]Application of gas chromatographic retention times to determine physicochemical properties of nitrated, oxygenated, and parent polycyclic aromatic hydrocarbons النص الكامل
2022
Vuong, Quang Tran | Son, Ji-Min | Thang, Phan Quang | Ohura, Takeshi | Choi, Sung-Deuk
Nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are receiving attention because of their high toxicity compared with parent PAHs. However, the experimental data of their physicochemical properties has been limited. This study proposed the gas chromatographic retention time (GC-RT) technique as an effective alternative one to determine octanol-air partition coefficients (KOA) and sub-cooled liquid vapor pressures (PL) for 11 NPAHs, 10 OPAHs, and 19 parent PAHs. The slopes and intercepts of the linear regressions between temperature versus KOA and PL were provided and can be used to estimate KOA and PL for the 40 targeted compounds at any temperature. The internal energies of phase transfer (ΔUOA) and enthalpies of vaporization (ΔHL) for all targeted compounds were also calculated using the GC-RT technique. High-molecular-weight compounds may release or absorb higher heat energy to transform between different phases. NPAHs and OPAHs had a non-ideal solution behavior with activity in octanol (γₒcₜ) in the range of 19–53 and 18–1,078, respectively, which is larger than the unity threshold. A comparison among four groups of PAH derivatives showed that a functional group (nitro-, oxygen-, chloro-, and bromo-) in PAH derivatives increased γₒcₜ for corresponding parent PAHs by tens (mono-group) to hundreds of times (di-group). This study suggests that the GC-RT method is applicable for indirectly measuring the physicochemical properties of various groups of organic compounds.
اظهر المزيد [+] اقل [-]The seasonal variations and potential sources of nitrous acid (HONO) in the rural North China Plain النص الكامل
2022
Song, Yifei | Zhang, Yuanyuan | Xue, Chaoyang | Liu, Pengfei | He, Xiaowei | Li, Xuran | Mu, Yujing
Nitrous acid (HONO), an essential precursor of hydroxyl radicals (OH) in the troposphere, plays an integral role in atmospheric photochemistry. However, potential HONO sources remain unclear, particularly in rural areas, where long-term (including seasonal) measurements are scarce. HONO and related parameters were measured at a rural site in the North China Plain (NCP) during the winter of 2017 and summer and autumn of 2020. The mean HONO level was higher in winter (1.79 ± 1.44 ppbv) than in summer (0.67 ± 0.50 ppbv) and autumn (0.83 ± 0.62 ppbv). Source analysis revealed that the heterogeneous conversion (including photo-enhanced conversion) of NO₂ on the ground surface dominated the daytime HONO production in the three seasons (43.1% in winter, 54.3% in summer, and 62.0% in autumn), and the homogeneous reaction of NO and OH contributed 37.8, 12.2, and 28.4% of the daytime HONO production during winter, summer, and autumn, respectively. In addition, the total contributions of other sources (direct vehicle emissions, particulate nitrate photolysis, NO₂ uptake and its photo-enhanced reaction on the aerosol surface) to daytime HONO production were less than 5% in summer and autumn and 12.0% in winter. Unlike winter and autumn, an additional HONO source was found in summer (0.45 ± 0.21 ppbv h⁻¹, 31.4% to the daytime HONO formation), which might be attributed to the HONO emission from the fertilized field. Among the primary radical sources (photolysis of HONO, O₃, and formaldehyde), HONO photolysis was dominant, with contributions of 82.6, 49.3, and 63.2% in winter, summer, and autumn, respectively. Our findings may aid in understanding HONO formation in different seasons in rural areas and may highlight the impact of HONO on atmospheric oxidation capacity.
اظهر المزيد [+] اقل [-]Synthesized effects of medium-term exposure to seawater acidification and microplastics on the physiology and energy budget of the thick shell mussel Mytilus coruscus النص الكامل
2022
Sui, Yanming | Zhang, Tao | Yao, Xinyun | Yan, Ming | Yang, Liguo | Mohsen, Mohamed | Nguyen, Haidang | Zhang, Shengmao | Jiang, Hucheng | Lv, Linlan | Zheng, Liang
Ocean acidification (OA) and microplastics (MPs) contamination are two results of human excises. In regions like estuarine areas, OA and MPs exposure are happening at the same time. The current research investigated the synthesized effects of OA and MPs exposure for a medium-term duration on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were treated by six combinations of three MPs levels (0, 10 and 1000 items L⁻¹) × two pH levels (7.3, 8.1) for 21 d. As a result, under pH 7.3, clearance rate (CR), food absorption efficiency (AE), respiration rate (RR), and scope for growth (SFG) significantly decreased, while the fecal organic dry weight ratio (E) significantly increased. 1000 items L⁻¹ MPs led to decrease of CR, E, SFG and increase of AE under pH 8.1. Interactive effects from combination of pH and MPs were found in terms of CR, AE, E and RR, but not for SFG of M. coruscus.
اظهر المزيد [+] اقل [-]Acute exposure to perfluorooctane sulfonate exacerbates heat-induced oxidative stress in a tropical coral species النص الكامل
2022
Bednarz, V.N. | Choyke, S. | Marangoni, L.F.B. | Otto, E.I. | Béraud, E. | Metian, M. | Tolosa, I. | Ferrier-Pagès, C.
Perfluorooctane sulfonate (PFOS) is among the most commonly per- and poly-fluoroalkyl substances (PFAS) found in environmental samples. Nevertheless, the effect of this legacy persistent organic contaminant has never been investigated on corals to date. Corals are the keystone organisms of coral reef ecosystems and sensitive to rising ocean temperatures, but it is not understood how the combination of elevated temperature and PFOS exposure will affect them. Therefore, the aims of the present study were (1) to evaluate the time-dependent bioconcentration and depuration of PFOS in the scleractinian coral Stylophora pistillata using a range of PFOS exposure concentrations, and (2) to assess the individual and combined effects of PFOS exposure and elevated seawater temperature on key physiological parameters of the corals. Our results show that the coral S. pistillata rapidly bioconcentrates PFOS from the seawater and eliminates it 14 days after ceasing the exposure. We also observed an antagonistic effect between elevated temperature and PFOS exposure. Indeed, a significantly reduced PFOS bioconcentration was observed at high temperature, likely due to a loss of symbionts and a higher removal of mucus compared to ambient temperature. Finally, concentrations of PFOS consistent with ranges observed in surface waters were non-lethal to corals, in the absence of other stressors. However, PFOS increased lipid peroxidation in coral tissue, which is an indicator of oxidative stress and enhanced the thermal stress-induced impairment of coral physiology. This study provides valuable insights into the combined effects of PFOS exposure and ocean warming for coral's physiology. PFOS is usually the most prevalent but not the only PFAS defected in reef waters, and thus it will be also important to monitor PFAS mixture concentrations in the oceans and to study their combined effects on aquatic wildlife.
اظهر المزيد [+] اقل [-]Phytoremediation of DEHP and heavy metals co-contaminated soil by rice assisted with a PGPR consortium: Insights into the regulation of ion homeostasis, improvement of photosynthesis and enrichment of beneficial bacteria in rhizosphere soil النص الكامل
2022
Liu, Anran | Wang, Wenjing | Chen, Xiancao | Zheng, Xiaoyan | Fu, Wenting | Wang, Gang | Ji, Jing | Guan, Chunfeng
The coexistence of di (2-ethylhexyl) phthalate (DEHP), Cd, and Zn poses a serious challenge to soil ecosystems. This study aimed to evaluate the phytoremediation potential of rice assisted with a plant growth promoting rhizobacteria (PGPR) consortium for the remediation of DEHP, Cd, and Zn co-contaminated soil. The consortium consisted of four bacterial strains, all of which exhibited Cd–Zn resistance and DEHP degradability. The results showed that the rice assisted by the bacterial consortium dissipated 86.1% DEHP while removing 76.0% Cd²⁺ and 92.2% Zn²⁺ from soil within 30 d. The presence of the PGPR consortium promoted plant growth and improved soil enzymatic activity, which may have helped enhance the removal of DEHP and heavy metals from the soil. Moreover, the application of the consortium modified the bacterial community and increased the relative abundance of bacteria related to DEHP degradation (Sphingomonas, Xanthobacteraceae), heavy metal immobilization (Massilia), and soil nutrient cycling (Nitrospira, Vicinamibacterales), which promoted plant growth and the removal of DEHP and heavy metals from soil. Notably, the DEHP and heavy metal contents in rice decreased substantially during the phytoremediation process. Therefore, the PGPR consortium could be beneficial for enhancing the removal of DEHP and heavy metals from the soil, without inducing the accumulation of these pollutants in rice. In general, this study confirmed that the combined use of rice and the PGPR consortium could remedy DEHP and heavy metal co-contaminated soil economically and ecologically without simultaneously posing risks for rice consumption.
اظهر المزيد [+] اقل [-]ElNFS1, a nitroreductase gene from Enterobacter ludwigii, confers enhanced detoxification and phytoremediation of 4-nitrobenzaldehyde in rice النص الكامل
2022
Li, Zhenjun | Gao, Jianjie | Tian, Yongsheng | Wang, Bo | Xu, Jing | Fu, Xiaoyan | Han, Hongjuan | Wang, Lijuan | Zhang, Wenhui | Wang, Yu | Deng, Yongdong | Gong, Zehao | Peng, Rihe | Yao, Quanhong
4-nitrobenzaldehyde (4-NBA) is a widely used chemical intermediate for industrial application and an important photodegradation product of chloramphenicol. This compound represents a substantial threat to human health and ecosystem due to its genotoxic and mutagenic effect. In this study, the 4-NBA detoxification by transgenic rice overexpressing a bacterial nitroreductase gene, ElNFS1, from Enterobacter ludwigii were investigated. The cytosol-targeted ElNFS1 transgenic plants were selected to comprehensively examine their physio-biochemical responses and phytoremediation potential to 4-NBA. Our results showed that the transgenic plants exhibited strong tolerance to 4-NBA. Overexpression of ElNFS1 could significantly alleviate 4-NBA-induced damages of photosynthetic apparatus and reactive oxygen species overproduction in transgenic plants. The phytoremediation assay revealed that transgenic plants could remove more 4-NBA from the medium than wild-type plants. HPLC and LC-MS assays showed that 4-aminobenzaldehyde was found in the reductive products of 4-NBA. Altogether, the function of ElNFS1 during 4-NBA detoxification was characterized for the first time, which provides a strong theoretical support for the application potential of ElNFS1 transgenic plants on the phytoremediation of 4-NBA.
اظهر المزيد [+] اقل [-]Transcriptomic and metabolomic associations with exposures to air pollutants among young adults with childhood asthma history النص الكامل
2022
Liao, Jiawen | Gheissari, Roya | Thomas, Duncan C. | Gilliland, Frank D. | Lurmann, Fred | Islam, Khandaker Talat | Chen, Zhanghua
Ambient air pollutants are well-known risk factors for childhood asthma and asthma exacerbation. It is unknown whether different air pollutants individually or jointly affect pathophysiological mechanisms of asthma. In this study, we aim to integrate transcriptome and untargeted metabolome to identify dysregulated genetic and metabolic pathways that are associated with exposures to a mixture of ambient and traffic-related air pollutants among adults with asthma history. In this cross-sectional study, 102 young adults with childhood asthma history were enrolled from southern California in 2012. Whole blood transcriptome was measured with 20,869 expression signatures, and serum untargeted metabolomics including 937 metabolites were analyzed by Metabolon, Inc. Participants’ exposures to regional air pollutants (NO₂, O₃, PM₁₀, PM₂.₅) and near-roadway air pollutants averaged at one month and one year before study visit were estimated based on residential addresses. xMWAS network analysis and joint-pathway analysis were performed to identify subnetworks and genetic and metabolic pathways that were associated with exposure to air pollutants adjusted for socio-characteristic covariates. Network analysis found that exposures to air pollutants mixture were connected to 357 gene markers and 92 metabolites. One-year and one-month averaged PM₂.₅ and NO₂ were associated with several amino acids related to serine, glycine, and beta-alanine metabolism. Lower serum levels of carnosine and aspartate, which are involved in the beta-alanine metabolic pathway, as well as choline were also associated with worse asthma control (p < 0.05). One-year and one-month averaged PM₁₀ and one-month averaged O₃ were associated with higher gene expression levels of HSPA5, LGMN, CTSL and HLA-DPB1, which are involved in antigen processing and presentation. These results indicate that exposures to various air pollutants are associated with altered genetic and metabolic pathways that affect anti-oxidative capacity and immune response and can potentially contribute to asthma-related pathophysiology.
اظهر المزيد [+] اقل [-]Towards a North Pacific Ocean long-term monitoring program for plastic pollution: A review and recommendations for plastic ingestion bioindicators النص الكامل
2022
Savoca, Matthew S. | Kuhn, Susanne | Sun, ChengJun | Avery-Gomm, Stephanie | Choy, C Anela | Dudas, Sarah | Hong, Sang Hee | Hyrenbach, K David | Li, Zongxian | Ng, Connie Ka-yan | Provencher, Jennifer F. | Lynch, Jennifer M.
Marine debris is now a ubiquitous component of the Anthropocene global ocean. Plastic ingestion by marine wildlife was first reported in the 1960s and since that time, roughly one thousand marine species have been reported to consume this debris. This study focuses on plastic ingestion by marine invertebrates and vertebrates in the North Pacific Ocean. Specifically, we reviewed the scientific literature to assess the scope of the problem, identified key bioindicator species, and proposed guidelines for future monitoring of plastic debris in North Pacific marine ecosystems. Our meta-analysis confirmed that the North Pacific is among the most polluted ocean regions globally; roughly half of all fish and seabird specimens and more than three-quarters of sea turtles and bivalve specimens examined in this region had consumed plastic. While there are not enough standardized data to assess if these ingestion rates are changing, sampling standardization and reporting of methods are improving over time. Using a rubric-evaluation approach, we evaluated 352 species for their potential to serve as bioindicators of the prevalence of plastic pollution in the North Pacific. This analysis revealed a suite of 12 bioindicator species candidates which sample a variety of ecosystem components and cover a wide range of plastic size classes. Thus, we contend that these bioindicator candidates provide a key foundation for developing a comprehensive plastic monitoring program in the region. To enhance the utility of these bioindicators, we developed a framework for standardized data collection to minimize methodological variability across different studies and to facilitate the assessment of temporal trends over space and time. Tracking plastic ingestion by these bioindicators will help to assess the effectiveness of mitigation actions in the region, a critical step to evaluate progress towards sustainability and improved ocean health in the 21st century.
اظهر المزيد [+] اقل [-]