خيارات البحث
النتائج 4431 - 4440 من 6,558
Ex situ evaluation of the effects of biochars on environmental and toxicological availabilities of metals and polycyclic aromatic hydrocarbons النص الكامل
2020
Janus, Adeline | Waterlot, Christophe | Douay, Francis | Pelfrêne, Aurélie
The present study experimented five biochars, one made from wood (400 °C, 12 h) and four made from miscanthus cultivated on contaminated soils (temperature 400/600 °C, duration 45/90 min). They were used as amendments at a 2% application rate on soil, cultivated or not cultivated with ryegrass, contaminated with (i) metals (Cd, Pb, and Zn), (ii) eight polycyclic aromatic hydrocarbons (PAHs), and (iii) a mix of metals and PAHs. The objectives were (i) to compare the effectiveness of the five biochars on soil parameters and pollutant availability and (ii) to determine the influence of soil multicontamination and ryegrass cultivation on biochar effectiveness. The results showed that biochar application did not necessarily lead to lower pollutant extractability and metal bioaccessibility. However, differences were highlighted between the biochars. The miscanthus biochars produced at 600 °C (BM600) showed higher effectiveness at decreasing metal extractability than the miscanthus biochars produced at 400 °C (BM400) due to its better sorption characteristics. In addition, ryegrass cultivation did not impact pollutant availability but modified metal bioaccessibility, especially for the soil amended with the BM600 and the woody biochar. Moreover, the presence of PAHs also negatively impacted the metal bioaccessibility in the soil amended with the BM600, and, on the contrary, positively impacted it in the soil amended with the BM400. Complementary studies are therefore necessary to understand the mechanisms involved, particularly in a context where soils requiring remediation operations are often multicontaminated and vegetated.
اظهر المزيد [+] اقل [-]Cynara scolymus leaves extract alleviates nandrolone decanoate-induced alterations in testicular function and sperm quality in albino rats النص الكامل
2020
Mohammed, Eman Taha | Radi, Abeer M. | Aleya, Lotfi | Abdel-Daim, Mohamed M.
Nandrolone decanoate (ND) is a commonly used anabolic-androgenic steroid. These drugs are illegally self-administered by athletes to enhance their sports performance. However, their abuse could influence the testicular function and fertility. The main objective of this study was to evaluate the possible protective effects of Cynara scolymus leaf extract (CLE) on ND-induced testicular dysfunction in rats. Five groups of adult male rats (10 rats each) were used. Group I rats received only saline and served as controls. Group II rats were injected with a vehicle once weekly, while group III rats received intramuscular injections of ND (20 mg/kg/week for 60 days). Group IV rats orally received 1 g/kg/day of CLE and group V rats received ND and CLE at the aforementioned doses. The results revealed that ND has a negative impact on the testicular function as evidenced by the significant increases (p ≤ 0.05) in testicular malondialdehyde concentration and serum non-prostatic acid phosphatase activity, as well as the significant decreases in serum testosterone levels, testicular weight, glutathione concentration, catalase enzyme activity, and total antioxidant capacity. These results were accompanied by considerable alterations of sperm characters and histopathological studies of the testicular tissue. However, co-treatment with CLE extract significantly alleviated (p ≤ 0.05) almost all ND-induced pathological alterations. In conclusion, co-treatment of ND-intoxicated rats with CLE ameliorated the toxic effects of ND on the testicular structure and function, probably due to its antioxidant activity.
اظهر المزيد [+] اقل [-]Chelate-assisted phytoaccumulation: growth of Helianthus annuus L., Vigna radiata (L.) R. Wilczek and Pennisetum glaucum (L.) R. Br. in soil spiked with varied concentrations of copper النص الكامل
2020
Mishra, Soumya Ranjan | Chandra, Rachna | Prusty, B Anjan Kumar
Phytoextraction is an economic, environment-friendly and growing technology for clean-up of metal-contaminated soil. Several factors play pivotal role in making phytoextraction a successful technique. Soil fraction is an important parameter that may affect phytoextraction potential. There has been an increased realization on the role of chelates in accelerating metal uptake by plants. Thus, the present study examined the influence of different soil fractions, spiked metal concentrations and chelate dosages on Cu accumulation by Helianthus annuus L. (common sunflower), Vigna radiata (L.) R. Wilczek (mung bean) and Pennisetum glaucum (L.) R. Br. (pearl millet). To mimic the mill tailings of various mined-out sites in India, five soil fractions containing different proportions of garden soil and silica were prepared (S1: 100% soil; S2: 75% soil + 25% silica; S3: 50% soil + 50% silica; S4: 25% soil + 75% silica; and S5: 100% silica) and each fraction was spiked with known Cu (100, 250, 500 and 1000 mg kg⁻¹) concentration. Upon maturity of the plant, EDTA and NTA in different dosages (0.25, 0.5, 1.0 and 2.0 g kg⁻¹) were applied to each pot. Bioconcentration factor (BCF), bioaccumulation coefficient (BAC) and translocation factor (TF) were estimated for each set. The accumulation of Cu by H. annuus, V. radiata and P. glaucum indicated direct relation between soil fractions and harvesting periods. Better plant growth and Cu uptake were observed in pots with silica < 50% of fraction, whereas growth was arrested in pots with silica > 75%. The Cu accumulation varied significantly (p < 0.05) among the species, spiked metal concentration, chelate dosages and plant parts. Best accumulation was reported in pots with 50% soil and 50% silica either under 1.0 g kg⁻¹ EDTA or 2.0 g kg⁻¹ NTA. Irrespective of the combinations of various variables, the harvesting time affected Cu accumulation considerably. Among the species, H. annuus emerged out to be the most efficient for Cu translocation. Apparently, soil amendments facilitated enhanced uptake thereby playing an active role in improving the BAC and TF. Assisted phytoextraction is still a need until full-fledged alternatives are established in the market. The future of chelate-assisted phytoextraction seems to be limited to ex situ condition.
اظهر المزيد [+] اقل [-]Box-Behnken response surface approach to identify factors affecting membrane fouling in a hybrid membrane bioreactor treating domestic sewage النص الكامل
2020
Li, Ying | Chen, Wei | Zheng, Xiao-Ying | Liu, Qiang | Xiang, Wei | Qu, Ji-Xiang
The effect of hydraulic retention time (HRT) and sludge retention time (SRT) on extracellular polymer substrate (EPS) content and resistance of a hybrid membrane bioreactor (HMBR) treating domestic sewage was analyzed by Box-Behnken response surface methodology. The quadratic response surface model demonstrated significant effects of both HRT and SRT on EPS content (both P value < 0.05), SRT on membrane resistance (P value = 0.0119), and their interaction was significant (P value = 0.0273) for EPS but not membrane resistance (P value = 0.0609). Model optimization indicates that the optimal conditions for the HMBR to control membrane fouling were an HRT of 10 h and SRT of 30 days. Under these optimal conditions, both the EPS content and the predicted membrane resistance closely matched the actual average value with the error about 8%. Thus, the feasibility of applying response surface methodology to an HMBR for treating domestic sewage was demonstrated. According to the detection result of the three-dimensional fluorescence (excitation-emission matrix), humic acid-like and fulvic acid-like substances gain much higher levels in the suspended carriers than those in the membrane and sludge, suggesting that these are key components of the membrane pollutants. Graphical abstract .
اظهر المزيد [+] اقل [-]Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters النص الكامل
2020
Karlsson, Therese M. | Kärrman, Anna | Rotander, Anna | Hassellöv, Martin
Owing to the development and adoption of a variety of methods for sampling and identifying microplastics, there is now data showing the presence of microplastics in surface waters from all over the world. The difference between the methods, however, hampers comparisons, and to date, most studies are qualitative rather than quantitative. In order to allow for a quantitative comparison of microplastics abundance, it is crucial to understand the differences between sampling methods. Therefore, a manta trawl and an in situ filtering pump were compared during realistic, but controlled, field tests. Identical microplastic analyses of all replicates allowed the differences between the methods with respect to (1) precision, (2) concentrations, and (3) composition to be assessed. The results show that the pump gave higher accuracy with respect to volume than the trawl. The trawl, however, sampled higher concentrations, which appeared to be due to a more efficient sampling of particles on the sea surface microlayer, such as expanded polystyrene and air-filled microspheres. The trawl also sampled a higher volume, which decreased statistical counting uncertainties. A key finding in this study was that, regardless of sampling method, it is critical that a sufficiently high volume is sampled to provide enough particles for statistical evaluation. Due to the patchiness of this type of contaminant, our data indicate that a minimum of 26 particles per sample should be recorded to allow for concentration comparisons and to avoid false null values. The necessary amount of replicates to detect temporal or spatial differences is also discussed. For compositional differences and size distributions, even higher particle counts would be necessary. Quantitative measurements and comparisons would also require an unbiased approach towards both visual and spectroscopic identification. To facilitate the development of such methods, a visual protocol that can be further developed to fit different needs is introduced and discussed. Some of the challenges encountered while using FTIR microspectroscopic particle identification are also critically discussed in relation to specific compositions found.
اظهر المزيد [+] اقل [-]Review: recent developments of substrates for nitrogen and phosphorus removal in CWs treating municipal wastewater النص الكامل
2020
Shen, Shuting | Li, Xiang | Cheng, Fangkui | Zha, Xiao | Lu, Xiwu
Substrates are the main factor influencing the performance of constructed wetlands (CWs), and especially play an important role in enhancing the removal of nitrogen and phosphorus from CWs. In the recent 10 years, based on the investigation of emerged substrates used in CWs, this paper summarizes the removal efficiency and mechanism of nitrogen and phosphorus by a single substrate in detail. The simultaneous removal efficiency of nitrogen and phosphorus by different combined substrates is emphatically analyzed. Among them, the reuse of industrial and agricultural wastes as water treatment substrates is recommended due to the efficient pollutant removal efficiency and the principle of waste minimization, also more studies on the environmental impact and risk assessment of the application, and the subsequent disposal of saturated substrates are needed. This work serves as a basis for future screening and development of substrates utilized in CWs, which is helpful to enhance the synchronous removal of nitrogen and phosphorus, as well as improve the sustainability of substrates and CWs. Moreover, further studies on the interaction between different types of substrates in the wetland system are desperately needed.
اظهر المزيد [+] اقل [-]Air pollution and hospitalization: an autoregressive distributed lag (ARDL) approach النص الكامل
2020
Abedi, Ali | Baygi, Mohammad Mousavi | Poursafa, Parinaz | Mehrara, Mohsen | Amin, Mohammad Mehdi | Hemami, Forouzan | Zarean, Maryam
Air pollution is one of the biggest global environmental problems in urban regions. This study aimed to investigate the validity of the relationship between air pollution and respiratory and cardiovascular hospitalization using time series methods. This time series study was conducted in Isfahan, Iran. We used data of hospitalized cases in three main university hospitals (Alzahra, Noor, Chamran) and air pollution data from 2014 to 2016. We applied the autoregressive distributed lag (ARDL) bounds testing approach of cointegration to examine the relationship between the air pollution and hospitalizations of respiratory and cardiovascular diseases. The results of air quality assessment on the number of respiratory and cardiovascular hospitalization demonstrate that in the case of cardiovascular disease, both in the long run and in the short run, the air quality index has a significant impact on men and women with a bigger impact in the long run compared to the short run. The value of the long-run coefficient indicates the relationship between air pollution index and cardiovascular hospitalization is stronger than respiratory hospitalizations. In the long term, the effect of the air quality index (AQI) on the number of hospitalizations is more than that in the short term. Based on the results, a 10-unit increase in AQI leads to 5.3% increase in the number of respiratory hospitalization. Accordingly, a 10-unit increase in AQI will result in 7.3% increase in the number of cardiovascular hospitalizations.
اظهر المزيد [+] اقل [-]Mapping spatio-temporal dynamics of main water parameters and understanding their relationships with driving factors using GF-1 images in a clear reservoir النص الكامل
2020
Zeng, Shuai | Li, Yunmei | Lyu, Heng | Xu, Jiafeng | Dong, Xianzhang | Wang, Rui | Yang, Ziqian | Li, Jianchao
Due to eutrophication and water quality deterioration in clear reservoirs, it is necessary to monitor and manage the main water parameters: concentration of total phosphorus (CTP), chemical oxygen demand (CCOD), chlorophyll-a (CCₕₗₐ), total suspended matter (CTSM), and Secchi disk depth (SDD). Five random forest (RF) models are developed to estimate these parameters in Xin’anjiang Reservoir, which is a clear drinking water resource in Zhejiang, China. Then, the spatio-temporal distributions of the parameters over 7 years (2013–2019) are mapped using GaoFen-1 (GF-1) images and the relationships with driving factors are analyzed. Our study demonstrates that the parameters’ distributions exhibited a significant spatio-temporal difference in Xin’anjiang Reservoir. Spatially, relatively high CTP, CCOD, CCₕₗₐ, and CTSM but low SDD appear in riverine areas, showing strong evidence of impact from the incoming rivers. Temporally, CCₕₗₐ and CTSM reached high values in summer and winter, whereas SDD and CTP were higher in the summer and autumn, respectively. In contrast, no significant seasonal variations of CCOD could be observed. This may be why CCOD is not sensitive to hydrological or meteorological factors. However, precipitation had a significant impact on CCₕₗₐ, CTP, SDD, and CTSM in riverine areas, though these parameters were less sensitive to meteorological factors. Moreover, the geomorphology of the reservoir and anthropogenic interference (e.g., tourism activities) also have a significant impact on the water quality parameters. This study demonstrates that coupling long-term GF-1 images and RF models could provide strong evidence and new insights to understand long-term dynamics in water quality and therefore support the development of corresponding management strategies for freshwater reservoirs.
اظهر المزيد [+] اقل [-]Application of ANN and RSM on fluoride removal using chemically activated D. sissoo sawdust النص الكامل
2020
Joshi, Saurabh | Bajpai, Shailendra | Jana, Somen
Response surface methodology (RSM) and artificial neural network (ANN) were used to generate a model for the optimization of fluoride removal using chemically activated Dalbergia sissoo sawdust (CADS). The single and collective effects of process parameters, i.e., solution pH, CADS dose, initial fluoride concentration, and contact time, were studied. The point of zero charge was found to be 4.2 with zeta potential analysis. In the first phase, a single-parameter study was performed to reveal dependency of fluoride removal on a particular process parameter. Positive effects of increment in CADS dose and contact time and negative effects of solution pH and initial fluoride concentration were observed. The second phase included RSM in which analysis of variance (ANOVA) was applied to test the feasibility of the mathematical model. The F value 1.91, R² value 0.87, and P value 0.11 show significance of the proposed model. Results obtained from the experiment set for central composite design (CCD) were used to predict the ANN response. Reasonable acceptable values of regression for training, test, and validation (0.76, 0.93, and 0.37) represent the suitability of the model. The ANN predicted 22.1% fluoride removal, which was close to the actual value (20.1%) and was comparable with CCD prediction (25.0%). BET surface area of CADS was found to be 76.33 m²/g. FTIR was performed to recognize the functional groups available for fluoride binding while SEM and EDX were conducted to ensure the changes in adsorbent surface morphology. Regeneration of CADS was feasible using an alkali medium. This study shows that CADS can be used for fluoride removal from aqueous stream in an efficient way.
اظهر المزيد [+] اقل [-]Textile dyeing industry: environmental impacts and remediation النص الكامل
2020
Khattab, Tawfik A. | Abdelrahman, Meram S. | Rehan, Mohamed
Color is a major attraction component of any fabric regardless of how admirable its constitution. Industrial production and utilization of synthetic dyestuffs for textile dyeing have consequently become a gigantic industry today. Synthetic dyestuffs have introduced a broad range of colorfastness and bright hues. Nonetheless, their toxic character has become a reason of serious concern to the environment. Usage of synthetic dyestuffs has adverse impacts on all forms of life. Existence of naphthol, vat dyestuffs, nitrates, acetic acid, soaping chemicals, enzymatic substrates, chromium-based materials, and heavy metals as well as other dyeing auxiliaries, makes the textile dyeing water effluent extremely toxic. Other hazardous chemicals include formaldehyde-based color fixing auxiliaries, chlorine-based stain removers, hydrocarbon-based softeners, and other non-biodegradable dyeing auxiliaries. The colloidal material existing alongside commercial colorants and oily froth raises the turbidity resulting in bad appearance and unpleasant odor of water. Furthermore, such turbidity will block the diffusion of sunlight required for the process of photosynthesis which in turn is interfering with marine life. This effluent may also result in clogging the pores of the soil leading to loss of soil productivity. Therefore, it has been critical for innovations, environmentally friendly remediation technologies, and alternative eco-systems to be explored for textile dyeing industry. Different eco-systems have been explored such as biocolors, natural mordants, and supercritical carbon-dioxide assisted waterless dyeing. Herein, we explore the different types of dyeing processes, water consumption, pollution, treatment, and exploration of eco-systems in textile dyeing industry.
اظهر المزيد [+] اقل [-]