خيارات البحث
النتائج 451 - 460 من 8,011
Heavy metal detoxification mechanisms by microalgae: Insights from transcriptomics analysis النص الكامل
2021
Tripathi, Shweta | Poluri, Krishna Mohan
Heavy metal pollution in ecosystem is a global threat. The associated toxicity and carcinogenic nature of heavy metals/metalloids such as mercury, cadmium, lead, and arsenic are imposing a severe risk to both ecological diversity and human lives. Harnessing the adaptive feature of microalgae for remediating toxic heavy metal has reached a milestone in past few decades. Transcriptomics analyses have provided mechanistic insights to map the dynamics of cellular events under heavy metal stress, thus deciphering the strategic responses of microalgae. Here, the present review comprehensively addresses the elicited molecular responses of microalgae to detoxify the heavy metal stress. The review highlights the intricate role of biochemical components and signaling networks mediating stress responsive transitions of microalgae at physiological level. Furthermore, the differential gene expression signifying the transporters involved in uptake, distribution/sequestration, and efflux of heavy metal has also been reviewed. In a nutshell, this study provided a comprehensive understanding of the molecular mechanisms adopted by microalgae at transcriptome level to nullify the oxidative stress while detoxifying the heavy metals.
اظهر المزيد [+] اقل [-]Dissemination of blaNDM-5 via IncX3 plasmids in carbapenem-resistant Enterobacteriaceae among humans and in the environment in an intensive vegetable cultivation area in eastern China النص الكامل
2021
Zhao, Qian | Berglund, Björn | Zou, Huiyun | Zhou, Ziyu | Xia, Huiyu | Zhao, Ling | Nilsson, Lennart E. | Li, Xuewen
The environment of a large-scale vegetable production area can be exposed to antibiotic residues and antibiotic-resistant bacteria (ARB) via animal manure and irrigation with contaminated water, which can facilitate the dissemination of ARB. However, the occurrence of ARB in plantation areas and their dissemination in this environment remain largely unexplored. In total, 382 samples including those from vegetable (n = 106), soil (n = 87), well water (n = 24), river water (n = 20), river sediments (n = 20), farmer feces (n = 58) and farmer hands (n = 67) were collected in 2019 from a large-scale cultivation area in Shandong, China. Selective agar plates were used to screen for carbapenem-resistant Enterobacteriaceae (CRE) and whole-genome sequencing and Southern blotting were used to characterise isolates and mobile genetic elements carrying carbapenem resistance determinants. A total of nine NDM-5-producing isolates of Escherichia coli, Klebsiella pneumoniae, and Citrobacter spp. were identified from environmental sources and human feces, all of which were multidrug-resistant. Single nucleotide polymorphism analysis suggested clonal transmission of carbapenem-resistant Citrobacter sedlakii within greenhouse soils in the area. Eight of the isolates carried closely related or identical IncX3 plasmids carrying blaNDM₋₅, which were shown to be conjugative via filter mating experiments, indicating the highly transmissible nature of this genetic element. Isolates of E. coli and Citrobacter freundii were detected in the feces of local farm workers and contained similar IncX3 plasmids with blaNDM₋₅ environmental isolates, suggesting a potential risk of CRE transfer from the work environment to the farm workers. Thus, further research is required to investigate the potential health risks associated with environmental exposure to CRE in vegetable cultivation areas.
اظهر المزيد [+] اقل [-]Construction of a regional inventory to characterize polycyclic aromatic hydrocarbon emissions from coal-fired power plants in Anhui, China from 2010 to 2030 النص الكامل
2021
Wang, Ruwei | Cai, Jiawei | Cai, Feixuan | Xia, Linlin | Sun, Xiangfei | Zeng, E. Y. (Eddy Y.)
The infrastructures of coal-fired power plants in China have changed significantly since 2010, but the magnitude and characteristics of polycyclic aromatic hydrocarbon (PAH) emissions remain to be updated. In the present study, a unit-based PAH emission inventory for coal-fired power plants between 2010 and 2017 was constructed for Anhui Province, China. Atmospheric PAH emissions from pulverized coal (PC) and circulating fluidized bed (CFB) units in 2017 were 8600 kg and 7800 kg, respectively. The emission rates and intensities for CFB units (7.2 kg ton⁻¹ and 2.1 kg MW⁻¹) were significantly higher than those for PC units (1.1 kg ton⁻¹ and 0.19 kg MW⁻¹), primarily because CFB boilers were operated at lower combustion temperatures and poor combustion conditions compared to PC boilers. The distribution patterns of PAH emissions across different age groups largely reflected the time periods for constructing coal-fired units in Anhui and for the transition of small units to large ones. The accomplishment of ultralow emission technologies and phase-out of outdated coal-fired units were responsible for the decreasing trend of PAH emissions between 2012 and 2017. The warmer summer in 2013 and 2017 and colder winter in 2011 compared to other years probably caused increased use of air conditioners, resulting in increased electricity consumption and PAH emissions. Future PAH emissions would decrease by 45–57% during 2017–2030, benefitting from power plant fleet optimization, i.e., phasing out outdated coal-fired units and replacing them with large ones. With the best available optimized power plant fleets and end-of-pipe control measures accomplished in Anhui’s CFPPs, PAH emissions in 2030 would potentially be reduced by 56–65%.
اظهر المزيد [+] اقل [-]Response surface modeling with Box-Behnken design for strontium removal from soil by calcium-based solution النص الكامل
2021
Song, Hojae | Chung, Hyeonyong | Nam, Kyoungphile
Owing to its physicochemical similarity to strontium (Sr), calcium (Ca) was tested as a key component of a soil washing solution for Sr-contaminated soil collected near a nuclear power plant. A four-factor, three-level Box–Behnken experimental design combined with response surface modeling was employed to determine the optimal Sr washing condition for Ca-based solution. The Ca concentration (0.1–1 M), liquid-to-soil ratio (5–20), washing time (0.5–2 h), and pH (2.0–7.0) were tested as the independent variables. From the Box–Behnken design, 27 sets of experimental conditions were selected, and a second-order polynomial regression equation was derived. The significance of the independent parameters and interactions was tested by analysis of variance. Ca concentration was found to be the most influential factor. To determine whether the four variables were independent, three-dimensional (3D) response surface plots were established. The optimal washing condition was determined to be as follows: 1 M Ca, L/S ratio of 20, 1 h washing, and pH = 2. Under this condition, the highest Sr removal efficiency (68.2%) was achieved on a soil contaminated with 90.1 mg/kg of Sr. Results from five-step sequential extraction before and after washing showed that 84.0% and 82.9% of exchangeable and carbonate-bound Sr were released, respectively. In addition, more tightly bound Sr, such as Fe/Mn oxides-bound and organic matter-bound Sr, were also removed (86.2% and 64.5% removal, respectively).
اظهر المزيد [+] اقل [-]Highly effective adsorption of antibiotics from water by hierarchically porous carbon: Effect of nanoporous geometry النص الكامل
2021
Xu, Liheng | Zhang, Mengxue | Wang, Yuanyu | Wei, Fang
Pharmaceutical antibiotics have recently become emerging environmental contaminants. To enhance the removal efficiency of antibiotics in water, hierarchically porous carbons (HPCs) with designed porous patterns are used in both batch and column mode adsorption processes in this study, and the role of their nanoporous geometry in the adsorption dynamics are explored. THPC (HPC with trimodal pores) and DHPC (HPC with bimodal pores) exhibit remarkably superior adsorption performances to the selected antibiotics than those of commercial activated carbon (AC) with similar surface area, especially in column mode adsorption. The effective treatment volumes of the HPC-columns remain up to 8–10 times those of the AC-columns for the removal of tetracycline and 4–6 times for the removal of tylosin. The mass transfer rates of the carbon-based columns present the order of THPC > DHPC > AC. As comparison, the columns based on monomodal mesoporous carbon (MEC) and microporous carbon (MAC) exhibit low effective treatment volumes although their high mass transfer speed. The interconnected meso/macropores in HPCs benefit the intraparticle mass transfer of guest molecules and the accessibility of adsorption sites. The micropores linking to the meso/macropores not only provide adsorption sites but also facilitate adsorption affinity.
اظهر المزيد [+] اقل [-]Substantial leakage into indoor air from on-site solid fuel combustion in chimney stoves النص الكامل
2021
Du, Wei | Zhuo, Shaojie | Wang, Jinze | Luo, Zhihan | Chen, Yuanchen | Wang, Zhenglu | Lin, Nan | Cheng, Hefa | Shen, Guofeng | Tao, Shu
Exposure to household air pollution (HAP) from solid fuel use (SFU) causes millions of premature deaths globally. Direct leakage from stoves into indoor air is believed to be the main cause of severe HAP. However, previous laboratory-based measurements reported leakage of minimal fractions from wood fuel combustion. Using a newly developed measurement method, on-site measurements were conducted to quantitatively evaluate the leakage of gases and particulate matter from different fuel-stove combinations. The fraction of indoor leakage to the total emission (F) of the measured air pollutants varied from 23 ± 11% to 40 ± 16% for different pollutants and fuel-stove combinations, and these were significantly higher than previously lab-based results. Fuel differences overwhelmed stove differences in influencing F values, with higher values from biomass burning than from coal combustion. The particles had higher F values than gases. Fugitive emission rates (ERs) were log-normally distributed, and biomass burning had higher ERs than coal burning. Indoor PM₂.₅ (fine particulate matter) and CO (carbon monoxide) concentrations measured during the burning period increased by nearly 1–2 orders of magnitude compared to concentrations before or after burning, confirming substantially high indoor leakage from fuel combustion in cookstoves. High fugitive emissions in indoor cookstoves quantified from the present on-site measurements effectively explain the high HAP levels observed in rural SFU households, and call for interventions to improve indoor air quality.
اظهر المزيد [+] اقل [-]Biochar composite with microbes enhanced arsenic biosorption and phytoextraction by Typha latifolia in hybrid vertical subsurface flow constructed wetland النص الكامل
2021
Irshad, Sana | Xie, Zuoming | Kāmrān, Muḥammad | Nawaz, Asad | Faheem, | Mehmood, Sajid | Gulzar, Huma | Saleem, Muhammad Hamzah | Rizwan, Muhammad | Malik, Zaffar | Parveen, Aasma | Ali, Shafaqat
Arsenic contamination of ground water is a worldwide issue, causing a number of ailments in humans. As an engineered and integrated solution, a hybrid vertical subsurface flow constructed wetland (VSSF-CW) amended with BCXZM composite (Bacillus XZM immobilized on rice husk biochar), was found effective for the bioremediation of arsenic contaminated water. Biological filter was prepared by amending top 3 cm of VSSF-CW bed with BCXZM. This filter scavenged ∼64% of total arsenic and removal efficiency of ∼95% was achieved by amended and planted (As + P + B) VSSF-CW, while non-amended (As + P) VSSF-CW showed a removal efficiency of ∼55%. The unplanted and amended (As + B) VSSF-CW showed a removal efficiency of ∼70%. The symbiotic association of Bacillus XZM, confirmed by SEM micrographs, significantly (p ≤ 0.05) reduced reactive oxygen species (ROS) and malondialdehyde (MDA) accumulation in Typha latifolia, hence, increasing the plant growth (2 folds). An increase in the indole acetic acid (IAA) and arsenic accumulation in plant was also observed in As + P + B system. The removal efficiency of the system was compromised after 4th consecutive cycle and 48 h was observed as optimum retention time. The FTIR-spectra showed the involvement of -N-H bond, carboxylic acids, –CH₂ stretching of –CH₂ and –CH₃, carbonyl groups, -C-H, C–O–P and C–O–C, sulphur/thiol and phosphate functional groups in the bio-sorption of arsenic by BCXZM filter. Our study is a first reported on the simultaneous phytoextraction and biosorption of arsenic in a hybrid VSSF-CW. It is proposed that BCXZM can be applied effectively in CWs for the bioremediation of arsenic contaminated water on large scale.
اظهر المزيد [+] اقل [-]Measuring mutagenicity in ecotoxicology: A case study of Cd exposure in Chironomus riparius النص الكامل
2021
Doria, Halina Binde | Waldvogel, Ann-Marie | Pfenninger, Markus
Existing mutagenicity tests for metazoans lack the direct observation of enhanced germline mutation rates after exposure to anthropogenic substances, therefore being inefficient. Cadmium (Cd) is a metal described as a mutagen in mammalian cells and listed as a group 1 carcinogenic and mutagenic substance. But Cd mutagenesis mechanism is not yet clear. Therefore, in the present study, we propose a method coupling short-term mutation accumulation (MA) lines with subsequent whole genome sequencing (WGS) and a dedicated data analysis pipeline to investigate if chronic Cd exposure on Chironomus riparius can alter the rate at which de novo point mutations appear. Results show that Cd exposure did not affect the basal germline mutation rate nor the mutational spectrum in C. riparius, thereby arguing that exposed organisms might experience a range of other toxic effects before any mutagenic effect may occur. We show that it is possible to establish a practical and easily implemented pipeline to rapidly detect germ cell mutagens in a metazoan test organism. Furthermore, our data implicate that it is questionable to transfer mutagenicity assessments based on in vitro methods to complex metazoans.
اظهر المزيد [+] اقل [-]Occurrence and spatio-seasonal distribution of organophosphate tri- and di-esters in surface water from Dongting Lake and their potential biological risk النص الكامل
2021
Xu, Liang | Zhang, Biao | Hu, Qiongpu | Liu, Yi | Shang, Ding | Zeng, Xiangying | Yu, Zhiqiang
In this study, 24 surface water samples were collected from Dongting Lake, China, in the wet and dry seasons, then the concentrations, composition profiles and spatio-seasonal variations of nine organophosphate triesters (OPEs) and five organophosphate diesters (Di-OPs) were determined. Significantly higher total OPE concentrations (∑OPEs) were observed in the wet season (49.5–148 ng L⁻¹) than in the dry season (5.00–45.7 ng L⁻¹) suggesting higher input via tributaries discharge as well as wet deposition in the studied region. Whereas lower levels of TnBP and (triphenyl phosphate (TPHP) in wet season reflected their possible degradation under solar irradiation. Comparable levels of total Di-OPs (∑Di-OPs) were found in the wet season (3.41–13.9 ng L⁻¹) and dry season (1.01–12.3 ng L⁻¹). Tri(2-chloroethyl) phosphate and tris(2-chloroisopropyl) phosphate were the main OPE components, while diphenyl phosphate, di-n-butyl phosphate and bis(1,3-dichloro-2-propyl) phosphate were the main Di-OP components. High levels of OPEs and Di-OPs were found in Datong Lake suggesting possible local emissions potentially related to fishery activity in the land-locked lake. Samples at river mouths to the lake also have higher levels of target OPEs and Di-OPs, the results disclosed obvious discharges from tributaries in Hunan Province. Negligible non-carcinogenic and carcinogenic risks were determined based on the measured concentrations in source waters. A limited ecological risk aquatic organisms in the Dongting Lake was identified, with most risk from TPHP.
اظهر المزيد [+] اقل [-]Ammonium removal and recovery from sewage water using column-system packed highly selective ammonium adsorbent النص الكامل
2021
Tanaka, Hisashi | Fujimoto, Masayuki | Minami, Kimitaka | Takahashi, Akira | Parajuli, Durga | Hiwatari, Takehiko | Kawakami, Masami | Kawamoto, Tohru
One of the strategies to realize a nitrogen cycle society, we attempted to recover ammonium ions from industrial wastewater, especially sewage water with adsorbent materials. We have developed an adsorbent with high ammonium selectivity based on copper hexacyanoferrate and granulated it as pellets. Using a compact column system filled with this granule adsorbent, ammonium ions were recovered from sewage containing 1000–1500 mg-NH₄⁺/L ammonium ions. Despite the coexistence of many metal ions, the adsorbent selectively and stably adsorbed ammonium ions. Furthermore, it was shown that the saturated adsorbent can be regenerated by flowing a potassium ion solution through a column adsorbent to desorb ammonium ions. In other words, the column can be used repeatedly, and there was almost little deterioration in adsorption even after 250 cycles. In addition, it was shown that by increasing the number of stages of this column, it is possible to sufficiently reduce the ammonium in the adsorbent solution and recover the concentrated ammonium solution.
اظهر المزيد [+] اقل [-]