خيارات البحث
النتائج 491 - 500 من 5,098
The effect of naphthenic acids on physiological characteristics of the microalgae Phaeodactylum tricornutum and Platymonas helgolandica var. tsingtaoensis
2018
Zhang, Huanxin | Tang, Xuexi | Shang, Jiagen | Zhao, Xinyu | Qu, Tongfei | Wang, Ying
Naphthenic acids (NAs) account for 1–2% of crude oil and represent its main acidic component. However, the aquatoxic effects of NAs on marine phytoplankton and their ecological risks have remained largely unknown. Using the marine microalgae Phaeodactylum tricornutum and Platymonas helgolandica var. tsingtaoensis as the target, we studied the effects of NAs on their growth, cell morphology and physiological characteristics. The cell density decreased as the concentrations of NAs increased, indicating that they had an adverse effect on growth of the investigated algae in a concentration-dependent manner. Moreover, scanning electron microscopy revealed NAs exposure caused damage such as deformed cells, shrunken surface and ruptured cell structures. Exposure to NAs at higher concentrations for 48 h significantly increased the content of chlorophyll (Chl) a and b in P. tricornutum, but decreased their levels in P. helgolandica var. tsingtaoensis. NAs with concentrations no higher than 4 mg/L gradually enhanced the Chl fluorescence (ChlF) parameters and decreased the ChlF parameters at higher concentrations for the two marine microalgae. Additionally, NAs induced hormesis on photosynthetic efficiency of the two microalgae and also have the species difference in their aquatic toxicity. Overall, the results of this study provide a better understanding of the physiological responses of phytoplankton and will enable better risk assessments of NAs.
اظهر المزيد [+] اقل [-]Assessing cadmium exposure risks of vegetables with plant uptake factor and soil property
2018
Yang, Yang | Chang, Andrew C. | Wang, Meie | Chen, Weiping | Peng, Chi
Plant uptake factors (PUFs) are of great importance in human cadmium (Cd) exposure risk assessment while it has been often treated in a generic way. We collected 1077 pairs of vegetable-soil samples from production fields to characterize Cd PUFs and demonstrated their utility in assessing Cd exposure risks to consumers of locally grown vegetables. The Cd PUFs varied with plant species and pH and organic matter content of soils. Once normalized PUFs against soil parameters, the PUFs distributions were log-normal in nature. In this manner, the PUFs were represented by definable probability distributions instead of a deterministic figure. The Cd exposure risks were then assessed using the normalized PUF based on the Monte Carlo simulation algorithm. Factors affecting the extent of Cd exposures were isolated through sensitivity analyses. Normalized PUF would illustrate the outcomes for uncontaminated and slightly contaminated soils. Among the vegetables, lettuce was potentially hazardous for residents due to its high Cd accumulation but low Zn concentration. To protect 95% of the lettuce production from causing excessive Cd exposure risks, pH of soils needed to be 5.9 and above.
اظهر المزيد [+] اقل [-]Impact of particulate sediment, bentonite and barite (oil-drilling waste) on net fluxes of oxygen and nitrogen in Arctic-boreal sponges
2018
Fang, James K.H. | Rooks, Christine A. | Krogness, Cathinka M. | Kutti, Tina | Hoffmann, Friederike | Bannister, Raymond J.
To meet the increasing global energy demand, expanding exploration for oil and gas reserves as well as associated drilling activities are expected in the Arctic-boreal region where sponge aggregations contribute to up to 90% of benthic biomass. These deep-water sponges along with their microbial endobionts play key roles in the nitrogen cycling in Arctic-boreal ecosystems. This study aimed to investigate the effects of drilling discharges and associated sediment resuspension events on net fluxes of oxygen, ammonium, nitrate and nitrite in three common deep-water sponge species in the form of explants. Sponges were exposed to suspended bentonite and barite, the primary particulate compounds in drilling waste, as well as suspended natural sediment particles for a period of 33 days (on average 10 mg L−1 for 12 h day−1). The exposure period was followed by a pollution abatement period for a further 33 days. No sponge mortality was observed during the experiment. However, exposure to these particles, especially to barite, led to reduced oxygen consumption by up to 33% that was linearly correlated with reduced nitrite/nitrate release by the sponges. The changes in net fluxes were accompanied by decreased tissue oxygenation by up to 54% within the sponges. These findings reveal the effects of fine particles on sponge metabolic processes by reducing aerobic respiration and microbial nitrification, and possibly by favouring anaerobic processes such as microbial denitrification. Most of the sponge responses recovered to their control levels upon the pollution abatement period, but the effects caused by barite may not be reversible. Our findings provide the first insight into the ecological consequences of oil and gas drilling activities on sponge-mediated nitrogen cycling in the Arctic-boreal region.
اظهر المزيد [+] اقل [-]Associations of hemoglobin biomarker levels of acrylamide and all-cause and cardiovascular disease mortality among U.S. adults: National Health and Nutrition Examination Survey 2003–2006
2018
Huang, Mengmeng | Jiao, Jingjing | Wang, Jun | Chen, Xinyu | Zhang, Yu
The potential hazards of acrylamide (AA) have been proposed due to its lifelong exposure. However, the association between AA exposure and mortality remains unclear.We evaluated the prospective association of AA hemoglobin adducts (HbAA and HbGA) with all-cause and cardiovascular disease (CVD) mortality in U.S. population from National Health and Nutrition Examination Survey (NHANES) 2003–2006.We followed 5504 participants who were ≥25 years of age for an average of 6.7 years at the baseline examination with annual linkage to the NHANES statistics database. Using AA hemoglobin biomarkers [HbAA, HbGA, sum of HbAA and HbGA (HbAA + HbGA), and ratio of HbGA to HbAA (HbGA/HbAA)], we determined mortality from all-causes and CVD through Cox proportional hazard regression analysis with multivariable adjustments both in non-smoker group and smoker group. In addition, subgroup analyses and sensitivity analyses were further conducted.After adjusting for sociodemographic, life behavioral and cardiovascular risk factors in non-smoker group, HbAA was positively associated with all-cause mortality (p for trend = 0.0197) and non-CVD mortality (p for trend = 0.0124). HbGA and HbGA/HbAA were inversely associated with all-cause mortality (p for trend = 0.0117 and 0.0098, respectively) and CVD mortality (p for trend=0.0009 and 0.0036, respectively). The multivariable adjusted hazard ratios (HRs) [95% confidence intervals (CIs)] of the upper three quartiles were 0.472 (95% CI: 0.283–0.786), 0.517 (95% CI: 0.299–0.894) and 0.470 (95% CI: 0.288–0.766) between HbGA/HbAA and all-cause mortality comparing with the lowest quartile, respectively. No significant associations were found between HbAA + HbGA and mortality in non-smoker group, and between all AA hemoglobin biomarkers and mortality in smoker group.Hemoglobin biomarker levels of AA were strongly associated with mortality in general U.S. non-smoker adults. These findings proposed a continuous public health concern in relation to environmental and dietary exposure to AA.
اظهر المزيد [+] اقل [-]The interaction between particulate organic matter and copper, zinc in paddy soil
2018
Shi, Jiyan | Wu, Qianhua | Zheng, Cuiqing | Yang, Jianjun
Particulate organic matter (POM) acts as a metals sink in soil, but only a few studies focused on the interaction of POM and heavy metals in paddy soil. The aim of this study is to investigate the interaction between POM and Copper (Cu)/Zinc (Zn). Two levels of Cu (100, 400 mg kg⁻¹) and Zn (250, 500 mg kg⁻¹) were used in a soil culture experiment. Our results showed that POM was porous structure and varied in size. Hydroxyl and carboxyl involved in POM adsorption of Cu and Zn. Rhizosphere effects roughen the surface of POM and enhanced the capacity of POM on heavy metals absorption. Cu-humic (26.2–33.9%) and Cu-citrate (38.5–42.4%) were dominated in POM, and Cu-goethite (41.7–57.7%), Cu-sulphide (6.6–27.6%) was dominated in soil. Rhizosphere effects decreased the proportion of organic-bond Cu along with the increasing the proportion of Cu-sulphide in POM. Addition of Cu and Zn inhibited the degradation of POM but rhizosphere effects promoted. Carbon content was increased in POM by heavy metal and rhizosphere effects. Our findings indicated that POM tended to retain the heavy metals in soil and heavy metals inhibited the degradation of POM, however, rhizosphere effects decreased the stability of POM-metals interactions.
اظهر المزيد [+] اقل [-]Enhancement effect of earthworm (Eisenia fetida) on acetochlor biodegradation in soil and possible mechanisms
2018
Hao, Yueqi | Zhao, Lixia | Sun, Yang | Li, Xiaojing | Weng, Liping | Xu, Huijuan | Li, Yongtao
Acetochlor is a widely used chloroacetanilide herbicide and has posed environmental risks in soil and water due to its toxicity and high leaching capacity. Earthworm represents the dominant invertebrate in soil and can promote the decomposition of organic pollutants. The effect of earthworm on acetochlor degradation in soil was studied by soil column experiment with or without acetochlor and earthworm in sterile and natural soils. The degradation capacities of drilosphere components to acetochlor were investigated by microcosm experiments. Bacterial and fungal acetochlor degraders stimulated by earthworm were identified by high-throughput sequencing. The degradation kinetics of acetochlor suggested that both indigenous microorganisms and earthworm played important roles in acetochlor degradation. Acetochlor degradation was quicker in soil with earthworms than without earthworms, with the degradation rates increased by 62.3 ± 15.2% and 9.7 ± 1.7% in sterile and natural treatments respectively. The result was related to the neutralized pH, higher enzyme activities and enhanced soil microbial community diversity and richness in the presence of earthworms. Earthworm cast was the degradation hotpot in drilosphere and exhibited better anaerobic degradation capacity in microcosm experiments. The acetochlor degradation rate of cast in anaerobic environment was 12.0 ± 0.1% quicker than that in aerobic environment. Residual acetochlor in soil conferred a long-term impairment on fungal community, and this inhibition could be repaired by earthworm. Earthworm stimulated indigenous degraders like Sphingomonas and Microascales and carried suspected intestinal degraders like Mortierella and Escherichia_coli to degradation process. Cometabolism between nutrition cycle species and degraders in casts also contributed to its faster degradation rates. The study also presented some possible anaerobic degradation species like Rhodococcus, Pseudomonas_fulva and Methylobacillus.
اظهر المزيد [+] اقل [-]An increase in precipitation exacerbates negative effects of nitrogen deposition on soil cations and soil microbial communities in a temperate forest
2018
Shi, Leilei | Zhang, Hongzhi | Liu, Tao | Mao, Peng | Zhang, Weixin | Shao, Yuanhu | Fu, Shenglei
World soils are subjected to a number of anthropogenic global change factors. Although many previous studies contributed to understand how single global change factors affect soil properties, there have been few studies aimed at understanding how two naturally co-occurring global change drivers, nitrogen (N) deposition and increased precipitation, affect critical soil properties. In addition, most atmospheric N deposition and precipitation increase studies have been simulated by directly adding N solution or water to the forest floor, and thus largely neglect some key canopy processes in natural conditions. These previous studies, therefore, may not realistically simulate natural atmospheric N deposition and precipitation increase in forest ecosystems. In a field experiment, we used novel canopy applications to investigate the effects of N deposition, increased precipitation, and their combination on soil chemical properties and the microbial community in a temperate deciduous forest. We found that both soil chemistry and microorganisms were sensitive to these global change factors, especially when they were simultaneously applied. These effects were evident within 2 years of treatment initiation. Canopy N deposition immediately accelerated soil acidification, base cation depletion, and toxic metal accumulation. Although increased precipitation only promoted base cation leaching, this exacerbated the effects of N deposition. Increased precipitation decreased soil fungal biomass, possible due to wetting/re-drying stress or to the depletion of Na. When N deposition and increased precipitation occurred together, soil gram-negative bacteria decreased significantly, and the community structure of soil bacteria was altered. The reduction of gram-negative bacterial biomass was closely linked to the accumulation of the toxic metals Al and Fe. These results suggested that short-term responses in soil cations following N deposition and increased precipitation could change microbial biomass and community structure.
اظهر المزيد [+] اقل [-]Presence of artisanal gold mining predicts mercury bioaccumulation in five genera of bats (Chiroptera)
2018
Kumar, Anjali | Divoll, Timothy J. | Ganguli, Priya M. | Trama, Florencia A. | Lamborg, Carl H.
Mercury, a toxic trace metal, has been used extensively as an inexpensive and readily available method of extracting gold from fine-grained sediment. Worldwide, artisanal mining is responsible for one third of all mercury released into the environment. By testing bat hair from museum specimens and field collected samples from areas both impacted and unimpacted by artisanal gold mining in Perú, we show monomethylmercury (MMHg) has increased in the last 100 years. MMHg concentrations were also greatest in the highest bat trophic level (insectivores), and in areas experiencing extractive artisanal mining. Reproductive female bats had higher MMHg concentrations, and both juvenile and adult bats from mercury contaminated sites had more MMHg than those from uncontaminated sites. Bats have important ecological functions, providing vital ecosystem services such as pollination, seed dispersal, and insect control. Natural populations can act as environmental sentinels and offer the chance to expand our understanding of, and responses to, environmental and human health concerns.
اظهر المزيد [+] اقل [-]Physiochemical characteristics of aerosol particles collected from the Jokhang Temple indoors and the implication to human exposure
2018
Cui, Lulu | Duo, Bu | Zhang, Fei | Li, Chunlin | Fu, Hongbo | Chen, Jianmin
This paper presents a detailed study on the indoor air pollution in the Jokahng Temple at Tibet Plateau, and its implication to human health. The mean concentrations of PM1.0 and PM2.5 were 435.0 ± 309.5 and 483.0 ± 284.9 μg/m3, respectively. The PM2.5 concentration exceeded the National Ambient Air Quality Standard (75 μg/m3) by 6.4 times. The size-segregated aerosols displayed a bimodal distribution. One peak was observed in the fine mode (0.4–2.1 μm) and the other peak appeared in the coarse mode (2.1–9.0 μm). The concentration of the total size-resolved PM was 794.3 ± 84.9 μg/m3. The mass fraction of coarse particles shared by 41.1%, apparently higher than that reported at low altitudes, probably due to incomplete combustion at Tibet Plateau with hypoxic atmospheric environment. The total concentration of polycyclic aromatic hydrocarbons (PAHs) was 331.2 ± 60.3 ng/m3, in which the concentration of benzo(a)pyrene (BaP) was 18.5 ± 4.3 ng/m3, over ten times higher than the maximum permissible risk value of 1 ng/m3 on account of carcinogenic potency of particulate PAHs through inhalation. PAHs exhibited a trimodal distribution, of which two peaks were observed in the fine mode and one peak in the coarse mode. With the aromatic rings increasing, the peak intensity increased in the fine mode. Na, Ca, Al, Mg and K dominated the elemental mass profiles, and metals displayed a bimodal distribution with a dominant peak in the coarse range. The total PAH deposition flux was 123.6 and 53.1 ng/h for adults and children, respectively. Coarse particles contributed most deposition flux in the head region, while fine particles contribute most deposition flux in the alveolar region. The increment lifetime cancer risk (ILCR) of PAHs ranaged at 10−5-10−4, indicating potential cancer risk to human health. The total deposition flux of metals was estimated at 1.4–13.2 ng/h. With the size increasing, deposition flux increased in the head region while decreased in the alveolar region. The highest ILCR of Cr and Ni were 4.9 × 10−5 and 1.5 × 10−6, respectively, exceeding the permissible risk of 10−6. The hazard quotient (HQ) of Fe (10−5-10−4) and Zn (10−6-10−5) were much lower than the safe level of 1.0, and thus they were not considered as a health concern.
اظهر المزيد [+] اقل [-]Sulfluramid use in Brazilian agriculture: A source of per- and polyfluoroalkyl substances (PFASs) to the environment
2018
Nascimento, Rodrigo A. | Nunoo, Deborah B.O. | Bizkarguenaga, Ekhine | Schultes, Lara | Zabaleta, Itsaso | Benskin, Jonathan P. | Spanó, Saulo | Leonel, Juliana
N-Ethyl perfluorooctane sulfonamide (EtFOSA) is a perfluorooctane sulfonate (PFOS) precursor and the active ingredient in sulfluramid, a pesticide which is used extensively in Brazil for management of leaf cutting ants. Here we investigate the occurrence of EtFOSA, PFOS, and other per- and polyfluoroalkyl substances (PFASs) in soil, eucalyptus leaves, water (ground, riverine, and coastal (estuarine/marine)) and coastal sediment from an agricultural region of Bahia State, Brazil. This area contains a larger number of eucalyptus plantations where sulfluramid is suspected to be applied. Soil, leaves, and coastal water (marine/estuarine) contained ∑PFAS concentrations of up to 5400 pg g⁻¹, 979 pg g⁻¹, and 1020 pg L⁻¹, respectively, with PFAS profiles generally dominated by PFOS and perfluorooctane sulfonamide (FOSA). Coastal sediment contained ∑PFAS concentrations of up to 198 pg g⁻¹, with PFOS, FOSA, and perfluorooctanoic acid (PFOA) being the most frequently observed PFASs. These substances are all potential EtFOSA transformation products, pointing to sulfluramid as a possible source. In riverine water, ∑PFAS concentrations of up to 8930 pg L⁻¹ were observed. PFOS and PFOA were detected in all river water samples. Groundwater also exhibited PFAS contamination (5730 pg L⁻¹ ∑PFASs), likely from sulfluramid use. The observation of other PFASs (e.g. perfluorobutanoic acid) in freshwater suggests that other PFAS sources (in addition to sulfluramid) may be important in this region. Overall, these data support the hypothesis that sulfluramid use contributes to the occurrence of PFASs in the Brazilian environment.
اظهر المزيد [+] اقل [-]