خيارات البحث
النتائج 511 - 520 من 4,921
Subchronic exposure of environmentally relevant concentrations of F-53B in mice resulted in gut barrier dysfunction and colonic inflammation in a sex-independent manner
2019
Pan, Zihong | Yuan, Xianling | Tu, Wenqing | Fu, Zhengwei | Jin, Yuanxiang
F-53B (6:2 chlorinated polyfluorinated ether sulfonate) is currently recognized as a safe alternative to long-chain PFASs in China. However, an increasing number of studies have recently authenticated its biotoxicological effects. In this study, for evaluating the gut toxicity of F-53B in mammals, both female and male mice were orally exposed to 0, 1, 3, or 10 μg/L F-53B for 10 weeks. Our results showed that F-53B significantly accumulated in the colon, ileum and serum when exposed to 10 μg/L F-53B for 10 weeks. F-53B exposure not only increased the transcriptional levels of ion transport-related genes but could also interact with the CFTR protein directly. Interestingly, subchronic F-53B exposure also increased the transcription of mucus secretion-related genes, but the protein level of Muc2 decreased after F-53B exposure, indicating that there was a compensatory phenomenon after mucus barrier injury. Furthermore, F-53B exposure also induced colonic inflammation associated with gut microbiota dysbiosis in the colon. Taken together, our results indicated that the potential gut toxicity of F-53B and almost all of the changed parameters were significantly affected in both female and male mice, suggesting that F-53B could disturb the gut barrier without sex dependence in mice.
اظهر المزيد [+] اقل [-]Metals leaching from common residential and commercial roofing materials across four years of weathering and implications for environmental loading
2019
McIntyre, J.K. | Winters, N. | Rozmyn, L. | Haskins, T. | Stark, J.D.
Urban stormwater is a major source of chemical pollution to receiving waters. Anthropogenic materials in the built environment can be an important source of chemicals to stormwater runoff. Roofing materials can leach significant amounts of metals, which vary over the life of the roof. We report concentrations of three metals (As, Cu, Zn) leaching into runoff from experimental panels of 14 roofing materials over 4.5 years of weathering. Ten roofing materials leached metals. Several leached >10 ppb during one or more study periods. The most common correlate with metal concentration was panel age, followed by precipitation amount. Extrapolating from these observations, we estimated the loading of metals from each roofing material during the first 10 years following installation. Eight materials were predicted to leach metals above background at the end of the 10 years. In combination with information on the prevalence of different roofing materials in the Puget Sound region of the Pacific Northwest, we estimated the relative amount of metals contributed from roofing materials in this basin. Most arsenic and copper was estimated to be contributed by residential roofing; nearly all arsenic from wood shakes manufactured with copper chromated arsenic, and copper contributed mainly from treated wood shakes followed by copper granule-containing asphalt shingles. Most zinc was estimated to be contributed by commercial roofs, including Zincalume and painted metal roofs. Overall our data shows that roofing materials can be an important long-term source of As, Cu, and Zn to stormwater runoff. Compared with atmospheric deposition, roof materials were a significant source, particularly of As and Cu. To get a complete picture of metals sourced from buildings, there is a need to study whole roof systems, including gutters, downspouts, and HVAC systems, as well as metals contributed from homeowner-applied treatments to their roofs.
اظهر المزيد [+] اقل [-]Association between exposure to arsenic, nickel, cadmium, selenium, and zinc and fasting blood glucose levels
2019
Li, Zhaoyang | Xu, Yali | Huang, Zhijun | Wei, Yue | Hou, Jian | Long, Tengfei | Wang, Fei | Hu, Hua | Duan, Yanying | Kwok, Woon | Zhang, Xiaomin | Chen, Xiang | Yuan, Hong | Wu, Tangchun | Shen, Minxue | He, Meian
Associations between single metal and fasting blood glucose (FBG) levels have been reported in previous studies. However, the association between multi-metals exposure and FBG level are little known. To assess the joints of arsenic (As), nickel (Ni), cadmium (Cd), selenium (Se), and zinc (Zn) co-exposure on FBG levels, Bayesian kernel machine regression (BKMR) statistical method was used to estimate the potential joint associations between As, Ni, Cd, Se, and Zn co-exposure and FBG levels among 1478 community-based Chinese adults from two counties, Shimen (n = 696) and Huayuan (n = 782), with different exposure profiles in Hunan province of China. The metals levels were measured in spot urine (As, Ni, and Cd) and plasma (Se and Zn) using inductively coupled plasma-mass spectrometry, respectively. The exposure levels of all the five metals were significantly higher in Shimen area (median: As = 57.76 μg/L, Cd = 2.75 μg/L, Ni = 2.73 μg/L, Se = 112.67 μg/L, Zn = 905.68 μg/L) than those in Huayuan area (As = 41.14 μg/L, Cd = 2.22 μg/L, Ni = 1.88 μg/L, Se = 65.59 μg/L, Zn = 819.18 μg/L). The BKMR analyses showed a significantly positive over-all effect of the five metals on FBG levels when metals concentrations were all above the 50th percentile while a statistically negative over-all effect when metals concentrations were all under the 50th percentile in Shimen area. However, a totally opposite over-all effect of the mixture of the five metals on FBG levels was found in Huayuan area. BKMR also revealed a non-linear exposure-effect of Zn on FBG levels in Huayuan area. In addition, interaction effects of As and Se on FBG level were observed. The relationship between single or combined metals exposure and FBG was different against different exposure profiles. Potential interaction effects of As and Se on FBG levels may exist.
اظهر المزيد [+] اقل [-]Icariin attenuate microcystin-LR-induced gap junction injury in Sertoli cells through suppression of Akt pathways
2019
Zhou, Yuan | Chen, Yu | Hu, Xueqin | Guo, Jun | Shi, Hao | Yu, Guang | Tang, Zongxiang
Microcystin-leucine-arginine (MC-LR) can cause male reproductive disorder. However, the underlying mechanism are not yet entirely elucidated. In this study, we aimed to investigated the effects of MC-LR on the integrity of blood-testis barrier (BTB) and the related molecular mechanisms. Both in vivo and in vitro experiments revealed that MC-LR caused disruption of BTB and gap junctions between Sertoli cells respectively, which was paralleled by the alteration of connexin43 (Cx43). Our data demonstrated that MC-LR decreased gap junction intercellular communication (GJIC) and impaired Cx43 expression by activating the phosphatidylinositol 3-kinase/Akt cascades. In addition, a possible protective effect of Icariin (ICA), a flavonoid isolated from Chinese medicinal herb, against MC-LR toxicity was investigated. The ICA prevented the degradation of GJIC and impairment of Cx43 induced by MC-LR via suppressing the Akt pathway. Together, our results confirmed that the expression of Cx43 induced by MC-LR was regulated in vivo and in vitro, which was involved in the destruction of BTB. Additionally, ICA seems to be able to mitigate the MC-LR toxic effects.
اظهر المزيد [+] اقل [-]Impact of long-term nitrogen deposition on the response of dune grassland ecosystems to elevated summer ozone
2019
Hayes, Felicity | Lloyd, Bethan | Mills, Gina | Jones, Laurence | Dore, Anthony J. | Carnell, Edward | Vieno, Massimo | Dise, Nancy | Fenner, Nathalie
Nitrogen deposition and tropospheric ozone are important drivers of vegetation damage, but their interactive effects are poorly understood. This study assessed whether long-term nitrogen deposition altered sensitivity to ozone in a semi-natural vegetation community. Mesocosms were collected from sand dune grassland in the UK along a nitrogen gradient (5–25 kg N/ha/y, including two plots from a long-term experiment), and fumigated for 2.5 months to simulate medium and high ozone exposure. Ozone damage to leaves was quantified for 20 ozone-sensitive species. Soil solution dissolved organic carbon (DOC) and soil extracellular enzymes were measured to investigate secondary effects on soil processes.Mesocosms from sites receiving the highest N deposition showed the least ozone-related leaf damage, while those from the least N-polluted sites were the most damaged by ozone. This was due to differences in community-level sensitivity, rather than species-level impacts. The N-polluted sites contained fewer ozone-sensitive forbs and sedges, and a higher proportion of comparatively ozone-resistant grasses. This difference in the vegetation composition of mesocosms in relation to N deposition conveyed differential resilience to ozone.Mesocosms in the highest ozone treatment showed elevated soil solution DOC with increasing site N deposition. This suggests that, despite showing relatively little leaf damage, the ‘ozone resilient’ vegetation community may still sustain physiological damage through reduced capacity to assimilate photosynthate, with its subsequent loss as DOC through the roots into the soil.We conclude that for dune grassland habitats, the regions of highest risk to ozone exposure are those that have received the lowest level of long-term nitrogen deposition. This highlights the importance of considering community- and ecosystem-scale impacts of pollutants in addition to impacts on individual species. It also underscores the need for protection of ‘clean’ habitats from air pollution and other environmental stressors.
اظهر المزيد [+] اقل [-]Importance of atmospheric transport for microplastics deposited in remote areas
2019
Zhang, Yulan | Gao, Tanguang | Kang, Shichang | Sillanpää, Mika
Atmospheric transport is an important pathway for the deposition of micro- and nano-plastics in remote areas. However, the sources and fate of atmospheric microplastics remain poorly understood. A study on atmospheric transport and deposition in the Pyrenean Mountains highlights the movement of microplastics away from known sources (cities, agriculture, and industry) into remote areas. Following this first evidence of atmospheric microplastic deposition in a pristine location, it is necessary to reconsider previous studies on atmospheric microplastic deposition and behavior in remote areas.
اظهر المزيد [+] اقل [-]Particulate matter accumulation capacity of plants in Hanoi, Vietnam
2019
Bertold, Mariën | Sinh, Nguyen Van | Mariën, Bertold | Mariën, Joachim | Nguyễn, Xuân Hòa | Nguyễn, Thế Cường | Nguyẽ̂n, Miên Thượng | Samson, Roeland
Population growth, urbanization, environmental conditions and rapid development have caused particulate matter (PM) levels to rise above all national and international health standards during the last two decades in many South-East Asian countries. These PM levels needs to be reduced urgently as they increase the risk of cardiovascular and respiratory health problems for millions of people. Plants have shown to efficiently reduce PM in the air by accumulation on their leaves. In order to investigate which plant species accumulate most PM, we screened 49 common plant species for their PM accumulation capacity in one of the tropical cities with the highest PM concentrations of the world, Hanoi (Vietnam). Using this subset of plants, we tested if certain leaf characteristics (leaf hydrophilicity, stomatal densities and the specific leaf area) can predict the PM accumulation efficiency of plant species. Our results show that the PM accumulation capacity varies substantially among species and that Muntingia calabura accumulated most PM in our subset of plants. We observed that plants with hydrophilic leaves, a low specific leaf area and a high abaxial stomatal density accumulated significantly more PM. Plants with these characteristics should be preferred by urban architects to reduce PM levels in tropical environments.
اظهر المزيد [+] اقل [-]Coexistence and association between heavy metals, tetracycline and corresponding resistance genes in vermicomposts originating from different substrates
2019
Liu, Kuan | Sun, Mingming | Ye, Mao | Chao, Huizhen | Zhao, Yuanchao | Xia, Bing | Jiao, Wentao | Feng, Yanfang | Zheng, Xiaoxuan | Liu, Manqiang | Jiao, Jiaguo | Hu, Feng
Coexistence of antibiotics/heavy metals and the overexpression of resistance genes in the vermicompost has become an emerging environmental issue. Little is known about the interaction and correlation between chemical pollutants and biological macromolecular compounds. In this study, three typical vermicompost samples were selected from the Yangtze River Delta region in China to investigate the antibiotic, heavy metal and corresponding antibiotic resistance genes (ARGs) and heavy metal resistance genes (HRGs). The results indicated the prevalence of tetracycline (TC), copper (Cu), zinc (Zn), cadmium (Cd), corresponding TC-resistance genes (tetA, tetC, tetW, tetM, tetO, and tetS) and HRGs (copA, pcoA, cusA, czcA, czcB, and czcR) in the three vermicompost samples. In addition, the ARG level was positively associated with the water-soluble TC fraction in the vermicompost, and it was same between the HRG abundance and exchangeable heavy metal content (p < 0.05). Moreover, a positive correlation was found between ARG and HRG abundance in the vermicompost samples, suggesting a close regulation mechanism involving the expression of both genes. The result obtained here could provide new insight into the controlling risk of heavy metals, TC, and relevant resistance genes mixed contamination in the vermicompost.
اظهر المزيد [+] اقل [-]Photochemical degradation kinetics and mechanism of short-chain chlorinated paraffins in aqueous solution: A case of 1-chlorodecane
2019
Zhang, Wanlan | Gao, Yanpeng | Qin, Yaxin | Wang, Mei | Wu, Junji | Li, Guiying | An, Taicheng
Short chain chlorinated paraffins (SCCPs) have attracted worldwide attention in recent years, due to their high production volume, persistent, bioaccumulative and toxic properties. In this study, 1-chlorodecane (CD) was selected as a model of SCCPs to explore its photochemical degradation behavior under UV irradiation. The results found that CD could be completely photochemical degradation within 120 min, and the •OH was found to be the main reactive species from both quenching experiments and electron paramagnetic resonance (EPR) results. However, the contribution of triple excited state of CD (³CD*) was still nonnegligible from the results with the absorption peak at 480 nm obtained by laser flash photolysis. Based on the identified intermediates as well as the data from theoretical chemical calculation, the detailed photochemical degradation mechanism of CD was tentatively proposed that CD firstly was excited and photo-ionized under UV irradiation, and the released Cl• in water could result in generating •OH. Then •OH initiates CD degradation mainly through the H-abstraction pathway, leading to the generation of several dehydrogenation radicals, which further generated alcohols or long chain intermediates through radical-radical reactions. The results will provide a comprehensive understanding of the degradation mechanism and environmental fates of SCCPs in water under UV irradiation.
اظهر المزيد [+] اقل [-]Negative impact of Novaluron on the nontarget insect Bombyx mori (Lepidoptera: Bombycidae)
2019
Santorum, Marilucia | Brancalhão, Rose Meire Costa | Guimarães, Ana Tereza Bittencourt | Padovani, Carlos Roberto | Tettamanti, Gianluca | dos Santos, Daniela Carvalho
Due to increased use of agrochemicals and growing concerns about ecotoxicology, the development of new insecticides, moving away from those with neurotoxic and broad spectrum effects towards insecticides that are safer for the environment and nontarget beneficial species, has been a research priority. Novaluron stands out among these newer insecticides, is an insect growth regulator that is used for the control of insect pests in crops grown close to mulberry plantations. Mulberry serves as food for the silkworm Bombyx mori, which is a nontarget insect of great economic importance to silk production. We investigated the lethal and sublethal effects of Novaluron on the development of B. mori. Larvae were segregated into experimental groups: the control groups (CGs) and the treatment groups (TGs), which were treated with the Novaluron concentration of 0.15 mL/L. Following exposure, we analyzed: larval mortality, changes in the insect life cicle and cytotoxic effects on the midgut cells. This is the first report about the Novaluron’s effects on B.mori. We detected rupture in the integument, complete cessation of feeding, late development, incomplete ecdysis and production of defective cocoons. After 240 h of exposure, there was 100% mortality in TG larvae exposed in the 3rd instar and 20% mortality from larvae exposed in the 5th instar. Cytotoxic effects was observed, such as dilation of cells, emission of cytoplasmic protrusions, extreme rarefaction of the cytoplasm and nuclei, dilation of the endoplasmic reticulum in addition to changes in mitochondria, the presence of large digestive vacuoles and intercellular spaces and the presence of active caspase. Novaluron exposure impairs the midgut and may affect the physiological functions of this organ. Novaluron additionally compromises several phases of insect development, indicating the importance of toxicology studies that utilize different life stages of nontarget species to evaluate the safe use of insecticides.
اظهر المزيد [+] اقل [-]