خيارات البحث
النتائج 521 - 530 من 4,938
Sediment characterisation and spatial distribution of heavy metals in the sediment of a tropical freshwater wetland of Indo-Burmese province النص الكامل
2019
Kalita, Suravi | Sarma, Hari Prasad | Devi, Arundhuti
The sediment characterisation of wetlands belonging to the Northeastern Region of India particularly regarding the assessment of sediment carbon stock is very scanty. The presently available literature on the wetlands cannot be employed as a common model for managing the wetlands of the Northeastern Region of India as wetlands are a sensitive ecosystem with a different origin or endogenous interventions. Thereby, this research was conducted on Deepor Beel for investigating the spatial and seasonal variation of sediment parameters, the relationship between the parameters and pollution status of the wetland. Results revealed that the study area is of an acidic nature with a sandy clay loam type texture. Organic carbon, total nitrogen and available nitrogen were higher in sediments in the monsoon period. The mean stock of the sediment carbon pool of Deepor Beel is estimated to be 2.5 ± 0.7 kg m−2. The average non-residual fraction percentage (63.2%) of Pb was higher than the residual fraction. Zn content ∼490 mg kg−1 exceeding its effect range medium (ERM) was determined to suggest frequent biological adverse effects. Highest metal enrichment factor (EF) values were shown by Zn and Pb, which ranged between 78 and 255. Risk assessment code (RAC) values of Pb between 21 and 29% indicated its high bio-accessibility risk. Pearson's coefficient matrix revealed a low degree of positive correlation between organic carbon content and metal concentration. Principal component analysis revealed that the first component comprising of EC, basic cations and metals accounted for 62.3% of variance while the second component (OM, OC, TN, AN, AP) and the third component (pH) accounted for 21.8% and 7.0% of the variance, respectively. The present study revealed the adverse impact of human inputs on the Deepor Beel quality status.
اظهر المزيد [+] اقل [-]Assessment of airborne enteric viruses emitted from wastewater treatment plant: Atmospheric dispersion model, quantitative microbial risk assessment, disease burden النص الكامل
2019
Pasalari, Hasan | Ataei-Pirkooh, Angila | Aminikhah, Mahdi | Jafari, Ahmad Jonidi | Farzadkia, Mahdi
From a health prospective, it is critical to provide a comprehensive model which integrates all the parameters involved in virus transmission and its consequences on human body. In order to estimate the health risks, for workers and residents, associated with an exposure airborne viruses emitted from a wastewater treatment (WWTP), the concentration levels of viruses in emitted bioaerosols over a twelve-month period were measured by real-time polymerase chain reaction (RT-PCR). A combined Gaussian plum dispersion model and quantitative microbial risk assessment (QMRA) with Monte-Carlo simulation served as suitable explanatory tools to estimate the risk of acquiring gastrointestinal illness (GI) due to exposure to air containing Rotavirus (RoV) and Norovirus (NoV) bioaerosols. Additionally, DALY metric was applied to quantify the disability and mortality for workers and residents. RoV and NoV were detected above aeration tank with annual mean concentration 27 and 3099 (Viruses/m³.h), respectively. The medium calculated DALY indicator based on viral loads in contaminant source (RoV:5.76 × 10⁻² and NoV:1.23 × 10⁻¹) and estimated in different distances away (300–1000 m) (RoV:2.87 × 10⁻²- 2.75 × 10⁻² and NoV:1.14 × 10⁻¹-1.13 × 10⁻¹) were markedly higher than the threshold values recommended by US EPA (10⁻⁴ DALY pppy) and WHO (10⁻⁶ DALY pppy). The sensitivity analysis highlighted dose exposure and disease burden per case (DBPC) as two most influential factors for both workers and residents following exposure to two pathogens of concern. Due to high resistance and high concentration in the environment, the presence of RoV and NoV can intensify the consequences of diarrhea especially for children under five years of age; A comprehensible and transparent presentation of DALYs and QMRA can help decision makers and responsibilities to justify the priorities of exposure to wastewater in comparison with other risks of daily life.
اظهر المزيد [+] اقل [-]Bioaccumulation of some trace elements in tropical mangrove plants and snails (Can Gio, Vietnam) النص الكامل
2019
Thanh-Nho, Nguyen | Marchand, Cyril | Strady, Emilie | Huu-Phat, Nguyen | Nhu-Trang, Tran-Thi
Mangrove sediments can store high amount of pollutants that can be more or less bioavailable depending on environmental conditions. When in available forms, these elements can be subject to an uptake by mangrove biota, and can thus become a problem for human health. The main objective of this study was to assess the distribution of some trace elements (Fe, Mn, Co, Ni, Cr, As, and Cu) in tissues of different plants and snails in a tropical mangrove (Can Gio mangrove Biosphere Reserve) developing downstream a megacity (Ho Chi Minh City, Vietnam). In addition, we were interested in the relationships between mangrove habitats, sediment quality and bioaccumulation in the different tissues studied. Roots and leaves of main mangrove trees (Avicennia alba and Rhizophora apiculata) were collected, as well as different snail species: Chicoreus capucinus, Littoraria melanostoma, Cerithidea obtusa, Nerita articulata. Trace elements concentrations in the different tissues were determined by ICP-MS after digestion with concentrated HNO₃ and H₂O₂. Concentrations differed between stands and tissues, showing the influence of sediment geochemistry, species specific requirements, and eventually adaptation abilities. Regarding plants tissues, the formation of iron plaque on roots may play a key role in preventing Fe and As translocation to the aerial parts of the mangrove trees. Mn presented higher concentrations in the leaves than in the roots, possibly because of physiological requirements. Non-essential elements (Ni, Cr and Co) showed low bioconcentration factors (BCF) in both roots and leaves, probably resulting from their low bioavailability in sediments. Regarding snails, essential elements (Fe, Mn, and Cu) were the dominant ones in their tissues. Most of snails were “macroconcentrators” for Cu, with BCF values reaching up to 42.8 for Cerithidea obtusa. We suggest that high quantity of As in all snails may result from its high bioavailability and from their ability to metabolize As.
اظهر المزيد [+] اقل [-]Metagenomics sheds light on the metabolic repertoire of oil-biodegrading microbes of the South Atlantic Ocean النص الكامل
2019
Appolinario, Luciana R. | Tschoeke, Diogo | Paixão, Raphael V.S. | Venas, Tainá | Calegario, Gabriela | Leomil, Luciana | Silva, Bruno S. | Thompson, Cristiane C. | Thompson, Fabiano L.
Unplanned oil spills during offshore oil production are a serious problem for the industry and the marine environment. Here we assess the biodegradation potential of marine microorganisms from three water depths in the Campos Basin (South Atlantic Ocean): (i) 5 m (surface), (ii) ∼80 m (chlorophyll maximum layer), and (iii) ∼1200 m (near the bottom). After incubating seawater samples with or without crude oil for 52 days, we used metagenomics and classic microbiology techniques to analyze microbial abundance and diversity, and measured physical-chemical parameters to better understand biodegradation processes. We observed increased microbial abundance and concomitant decreases in dissolved oxygen and hydrocarbon concentrations, indicating oil biodegradation in the three water depths treatments within approximately 27 days. An increase in metagenomic sequences of oil-degrading archaea, fungi, and bacteria (Alcanivorax, Alteromonas, Colwellia, Marinobacter, and Pseudomonas) accompanied by a significant increase in metagenomic sequences involved in the degradation of aromatic compounds indicate that crude oil promotes the growth of microorganisms with oil degradation potential. The abundance of genes involved in biodegrading benzene, toluene, ethylbenzene, xylene, alkanes, and poly-aromatic hydrocarbons peaked approximately 3 days after oil addition. All 12 novel metagenome-assembled genomes contained genes involved in hydrocarbon degradation, indicating the oil-degrading potential of planktonic microbes in the Campos Basin.
اظهر المزيد [+] اقل [-]Sedimentary records of polychlorinated biphenyls in the East China Marginal Seas and Great Lakes: Significance of recent rise of emissions in China and environmental implications النص الكامل
2019
Wu, Zilan | Lin, Tian | Li, An | Zhou, Shanshan | He, Huan | Guo, Jiehong | Hu, Limin | Li, Yuanyuan | Guo, Zhigang
Polychlorinated biphenyls (PCBs) in dated sediment cores from the East China Marginal Seas (ECMSs) and the chronology of the net fluxes to sediments were analyzed. The accumulation of 27 PCBs (ΣPCBs) in the ECMS sediments is about 5–26 ng cm⁻², with the net depositional fluxes of ΣPCBs 10 times lower than those observed in the Great Lakes during the 1960s–1970s. Exponential increases in PCB deposition to the ECMS sediments since the 1990s were observed, which closely follows the fast growth of PCB emissions from industrial thermal processes and e-waste related sources in China. Recent PCB fluxes to the study sites in the ECMSs and the Great Lakes are comparable; the former surged forward with a rising tendency, while the latter showed continued decline after the late 1970s. Due to the different PCB application histories and sources between the two regions, the ECMS sediments may remain as a net sink for land-derived PCBs, while sediments in the Great Lake may have been acting as a secondary source releasing PCBs to water. A higher proportion of trichlorobiphenyls in the ECMS sediments than the Great Lakes was indicated, which may imply the net transport of atmospheric PCBs from China.
اظهر المزيد [+] اقل [-]The impact of household air cleaners on the chemical composition and children's exposure to PM2.5 metal sources in suburban Shanghai النص الكامل
2019
Brehmer, Collin | Norris, Christina | Barkjohn, Karoline K. | Bergin, Mike H. | Zhang, Junfeng | Cui, Xiaoxing | Zhang, Yinping | Black, Marilyn | Li, Zhen | Shafer, Martin | Schauer, James J.
Increased public awareness of the health impacts of atmospheric fine particulate matter (PM₂.₅) has led to increased demand and deployment of indoor air cleaners. Yet, questions still remain about the effectiveness of indoor air cleaners on indoor PM₂.₅ concentrations and personal exposure to potentially hazardous components of PM₂.₅. Metals in PM₂.₅ have been associated with adverse health outcomes, so knowledge of their sources in urban indoor and outdoor areas and how exposures are influenced by indoor air cleaners would be beneficial for public health interventions. We collected 48-h indoor, outdoor, and personal PM₂.₅ exposure samples for 43 homes with asthmatic children in suburban Shanghai, China during the spring months. Two sets of samples were collected for each household, one set with a functioning air filter placed in the bedroom (“true filtration”) and the other with a non-functioning (“sham”) air cleaner. PM₂.₅ samples were analyzed for elements, elemental carbon, and organic carbon. The major sources of metals in PM₂.₅ were determined by Positive Matrix Factorization (PMF) to be regional aerosol, resuspended dust, residual oil combustion, roadway emissions, alloy steel abrasion, and a lanthanum (La) and cerium (Ce) source. Under true filtration, the median indoor to outdoor percent removal across all elements increased from 31% to 78% and from 46% to 88% across all sources. Our findings suggest that indoor air cleaners are an effective strategy for reducing indoor concentrations of PM₂.₅ metals from most sources, which could translate into improved health outcomes for some populations.
اظهر المزيد [+] اقل [-]Rare earth elements in the Pearl River Delta of China: Potential impacts of the REE industry on water, suspended particles and oysters النص الكامل
2019
Ma, Lan | Đức Huy, | Wang, Wei | Evans, R Douglas | Wang, Wen-Xiong
Rare earth element (REE) concentrations and patterns were measured in surface water, suspended particles (SP) and oysters from the Pearl River Estuary, China. During the rainy season of 2017, higher REE concentrations were found at the stations in the estuary (ΣREE = 0.06–0.42 μg L⁻¹) than those at the river mouths (referred to as ‘outlet’ stations, ΣREE = 0.001–0.14 μg L⁻¹). However, the reverse occurred in the dry season of 2016 (ΣREE = 0.07–0.16 μg L⁻¹ in the mid-estuary vs. 0.001–0.02 μg L⁻¹in the outlet stations). Elevated concentrations of Pr, Nd, Dy and Ho, relative to the other REEs were found in water in both seasons at most sampling locations. However, in some estuary stations, no anomalies were detected in the SP or in the oysters while some anomalies were seen in SP from the outlet stations. Significant correlations between REE concentrations in SP and oysters as well as between both total REE concentrations and the La/Yb ratio (reflecting enhanced accumulation of light REEs (LREEs)) in oysters indicate that, in the Pearl River Estuary, the dominant REE uptake pathway in oysters is from particles.The elevated concentrations of Pr, Nd, Dy and Ho, which are reported here for the first time suggest that elevated levels of these elements may result from REE recycling and other industrialized activities in this area of southern China. Specific REEs could be used to indicate emerging contamination by the modern REE industry; furthermore, REE anomalies and patterns may be suitable tools to track REE sources.
اظهر المزيد [+] اقل [-]Exposure to Aroclor 1254 persistently suppresses the functions of pancreatic β-cells and deteriorates glucose homeostasis in male mice النص الكامل
2019
Xi, Zhihui | Fang, Lu | Xu, Jing | Li, Bingshui | Zuo, Zhenghong | Lv, Liangju | Wang, Chonggang
Polychlorinated biphenyls (PCBs) are a class of persistent organic pollutants that have been shown to be related to the occurrence of type 2 diabetes mellitus (T2DM). Nevertheless, it is necessary to further explore the development of T2DM caused by PCBs and its underlying mechanisms. In the present study, 21-day-old C57BL/6 male mice were orally treated with Aroclor 1254 (0.5, 5, 50 or 500 μg kg−1) once every three days. After exposure for 66 d, the mice showed impaired glucose tolerance, 13% and 14% increased fasting serum insulin levels (FSIL), and 63% and 69% increases of the pancreatic β-cell mass in the 50 and 500 μg kg−1 groups, respectively. After stopping exposure for 90 d, treated mice returned to normoglycemia and normal FSIL. After re-exposure of these recovered mice to Aroclor 1254 for 30 d, fasting plasma glucose showed 15%, 28% and 16% increase in the 5, 50 and 500 μg kg−1 treatments, FSIL exhibited 35%, 27%, 30% and 32% decrease in the 0.5, 5, 50 or 500 μg kg−1 groups respectively, and there was no change in pancreatic β-cell mass. Transcription of the pancreatic insulin gene (Ins2) was significantly down-regulated in the 50 and 500 μg kg−1 groups, while DNA-methylation levels were simultaneously increased in the Ins2 promoter during the course of exposure, recovery and re-exposure. Reduced insulin levels were initially rescued by a compensative increase in β-cell mass. However, β-cell mass eventually failed to make sufficient levels of insulin, resulting in significant increases in fasting blood glucose, and indicating the development of T2DM.
اظهر المزيد [+] اقل [-]Widespread occurrence and spatial distribution of glyphosate, atrazine, and neonicotinoids pesticides in the St. Lawrence and tributary rivers النص الكامل
2019
Montiel-León, Juan Manuel | Muñoz, Gabriel | Vo Duy, Sung | Do, Dat Tien | Vaudreuil, Marc-Antoine | Goeury, Ken | Guillemette, François | Amyot, Marc | Sauvé, Sébastien
The occurrence and spatial distribution of selected pesticides were investigated along a 200-km reach of the St. Lawrence River (SLR) and tributaries in Quebec, Canada. Surface water samples (n = 68) were collected in the summer 2017 and analyzed for glyphosate, atrazine (ATZ), 8 systemic insecticides (acetamiprid, clothianidin, dinotefuran, fipronil, imidacloprid, nitenpyram, thiacloprid, and thiamethoxam) and some metabolites. Overall, 99% of the surface water samples were positive to at least one of the targeted pesticides. The most recurrent compounds were glyphosate (detection frequency: 84%), ATZ (82%), thiamethoxam (59%), desethylatrazine (DEA: 47%), and clothianidin (46%). Glyphosate displayed variable levels (4–3,000 ng L−1), with higher concentrations in south tributaries (e.g., Nicolet and Yamaska). In positive samples, the sum of ATZ and DEA varied between 5 and 860 ng L−1, and the sum of 6 priority neonicotinoids between 1.5 and 115 ng L−1. From Repentigny to the Sorel Islands, the spatial distribution of pesticides within the St. Lawrence River was governed by the different upstream sources (i.e., Great Lakes vs. Ottawa River) due to the limited mixing of the different water masses. Cross-sectional patterns revealed higher concentrations of glyphosate and neonicotinoids in the north portions of transects, while the middle and south portions showed higher levels of atrazine. In Lake St. Pierre and further downstream, cross-sections revealed higher levels of the targeted pesticides near the southern portions of the SLR. This may be due to the higher contributions from south shore tributaries impacted by major agricultural areas, compared to north shore tributaries with forest land and less cropland use. Surface water samples were compliant with guidelines for the protection of aquatic life (chronic effects) for glyphosate and atrazine. However, 31% of the samples were found to surpass the guideline value of 8.3 ng L−1 for the sum of six priority neonicotinoids.
اظهر المزيد [+] اقل [-]Negligible effects of microplastics on animal fitness and HOC bioaccumulation in earthworm Eisenia fetida in soil النص الكامل
2019
Wang, Jie | Coffin, Scott | Sun, Chengliang | Schlenk, Daniel | Gan, Jay
As one type of the most widespread and long-lasting anthropogenic contaminants, microplastics have become a global environmental concern. While numerous studies have demonstrated effects of microplastics on aquatic organisms, the potential influence on terrestrial faunas is relatively less known, even though soil is a primary recipient and sink of plastics. In this study, earthworm Eisenia fetida was exposed to different levels (0, 1, 5, 10, and 20% d.w.) of polyethylene (PE, ≤300 μm) and polystyrene (PS, ≤250 μm) particles in an agricultural soil to evaluate the oxidative stress. Fluorescence imaging, after dying with Nile Red, clearly indicated the ingestion of PE and PS particles by E. fetida. Exposure to PE or PS particles at the highest rate (20%) for 14 d significantly (p < 0.05) increased the activity of catalase and peroxidase and the level of lipid peroxidation, while inhibited the activity of superoxide dismutase and glutathione S-transferase in E. fetida. However, no discernible effect was detected at amendment rates ≤10% for the majority of biochemical endpoints, suggesting that microplastic-induced oxidative stress would not occur in E. fetida under most environmental conditions. The influence of microplastics on bioaccumulation of PAHs and PCBs was also evaluated in E. fetida exposed to different levels (0, 0.1, 1, 5, and 10% d.w.) of PE and PS particles. The tissue concentrations of PAHs and PCBs were reduced in the presence of microplastics at amendment rates ≥1%, suggesting that microplastics did not act as a carrier to enhance contaminant uptake. This was attributed to competitive sorption of microplastics for contaminants and the specific feeding behavior of earthworm. Biodynamic model analysis confirmed that ingestion of microplastics contributed negligibly to contaminant bioaccumulation. Findings of this study suggested that under environmentally relevant conditions, microplastics should not cause significant toxic effects to E. fetida, nor enhance its accumulation of hydrophobic contaminants.
اظهر المزيد [+] اقل [-]