خيارات البحث
النتائج 521 - 530 من 6,548
Degradation of glyphosate in a Colombian soil is influenced by temperature, total organic carbon content and pH النص الكامل
2020
Muskus, Angelica M. | Krauss, Martin | Miltner, Anja | Hamer, Ute | Nowak, Karolina M.
Glyphosate is one of the most used herbicides in the world. The fate of glyphosate in tropical soils may be different from that in soils from temperate regions. In particular, the amounts and types of non-extractable residues (NER) may differ considerably, resulting in different relative contributions of xenoNER (sorbed and sequestered parent compound) and bioNER (biomass residues of degraders). In addition, environmental conditions and agricultural practices leading to total organic carbon (TOC) or pH variation can alter the degradation of glyphosate. The aim of this study is thus to investigate how the glyphosate degradation and turnover are influenced by varying temperature, pH and TOC of sandy loam soil from Colombia. The pH or TOC of a Colombian soil was modified to yield five treatments: control (pH 7.0, TOC 3%), 4% TOC, 5% TOC, pH 6.5, and pH 5.5. Each treatment received 50 mg kg⁻¹ of ¹³C₃¹⁵N-glyphosate and was incubated at 10 °C, 20 °C and 30 °C for 40 days. Rising temperature increased the mineralization of ¹³C₃¹⁵N-glyphosate from 13 to 20% (10 °C) to 32–39% (20 °C) and 41–51% (30 °C) and decreased the amounts of extractable ¹³C₃¹⁵N-glyphosate after 40 days of incubation from 13 to 26% (10 °C) to 4.6–12% (20 °C) and 1.2–3.2% (30 °C). Extractable ¹³C₃¹⁵N-glyphosate increased with higher TOC and higher pH. Total ¹³C-NER were similar in all treatments and at all temperatures (47%–60%), indicating that none of the factors studied affected the amount of total ¹³C-NER. However, ¹³C-bioNER dominated within the ¹³C-NER pool in the control and the 4% TOC treatment (76–88% of total ¹³C-NER at 20 °C and 30 °C), whereas in soil with 5% TOC and pH 6.5 or 5.5 ¹³C-bioNER were lower (47–61% at 20 °C and 30 °C). In contrast, the ¹⁵N-bioNER pool was small (between 14 and 39% of the ¹⁵N-NER). Thus, more than 60% of ¹⁵N-NER is potentially hazardous xenobiotic NER which need careful attention in the future.
اظهر المزيد [+] اقل [-]Sodium fluoride exposure triggered the formation of neutrophil extracellular traps النص الكامل
2020
Wang, Jing-Jing | Wei, Zheng-Kai | Han, Zhen | Liu, Zi-Yi | Zhang, Yong | Zhu, Xing-Yi | Li, Xiao-Wen | Wang, Kai | Yang, Zheng-Tao
In recent years, numerous studies paid more attention to the molecular mechanisms associated with fluoride toxicity. However, the detailed mechanisms of fluoride immunotoxicity in bovine neutrophils remain unclear. Neutrophil extracellular traps (NETs) is a novel immune mechanism of neutrophils. We hypothesized that sodium fluoride (NaF) can trigger NETs activation and release, and investigate the related molecular mechanisms during the process. We exposed peripheral blood neutrophils to 1 mM NaF for 120 min in bovine neutrophils. The results showed that NaF exposure triggered NET-like structures decorated with histones and granule proteins. Quantitative measurement of NETs content correlated positively with the concentration of NaF. Mechanistically, NaF exposure increased reactive oxygen species (ROS) levels and phosphorylation levels of ERK, p38, whereas inhibiting the activities of superoxide dismutase (SOD) and catalase (CAT) compared with control neutrophils. NETs formation is induced by NaF and this effect was inhibited by the inhibitors diphenyleneiodonium chloride (DPI), U0126 and SB202190. Our findings described the potential importance of NaF-triggered NETs related molecules, which might help to extend the current understanding of NaF immunotoxicity.
اظهر المزيد [+] اقل [-]High-effectively degrade the di-(2-ethylhexyl) phthalate via biochemical system: Resistant bacterial flora and persulfate oxidation activated by BC@Fe3O4 النص الكامل
2020
Xie, Yanluo | Liu, Huakang | Li, Hao | Tang, Hao | Peng, He | Xu, Heng
Di-(2-ethylhexyl) phthalate (DEHP) has been classified as a priority pollutant which increased the healthy risk to human and animals dramatically. Hence, a novel biochemical system combined by DEHP-resistant bacterial flora (B) and a green oxidant of persulfate (PS) activated by Nano-Fe₃O₄ was applied to degrade DEHP in contaminated soil. In this study, the resistant bacterial flora was screened from activated sludge and immobilized by sodium alginate (SAB). Nano-Fe₃O₄ was coated on biochar (BC@Fe₃O₄) to prevent agglomerating in soil. X-ray diffraction (XRD) and scanning electron microscope (SEM) were utilized to characterize BC@Fe₃O₄. Results demonstrated that the treatment of biochemical system (SAB + BC@Fe₃O₄ + PS) presented the maximum degradation rate about 92.56% within 24 days of incubation and improved soil microecology. The 16S rDNA sequences analysis of soil microorganisms showed a significantly different abundance and a similar diversity among different treatments. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional genes difference analysis showed that some metabolic pathways, such as metabolism of cofactors and vitamins, energy metabolism, cell growth and death, replication and repair, were associated with the biodegradation of DEHP. Besides, DEHP was converted to MEHP and PA by biodegradation, while DEHP was converted to DBP and PA by persulfate and BC@Fe₃O₄, and then ultimately degraded to CO₂ and H₂O.
اظهر المزيد [+] اقل [-]Microplastic pollution in water and sediment in a textile industrial area النص الكامل
2020
Deng, Hua | Wei, Ren | Luo, Wenya | Hu, Lingling | Li, Bowen | Di, Ya’nan | Shi, Huahong
Microplastics pollution in the environment is closely determined by the surrounding industrial and human activities. In present study, we investigated microplastics in water and sediment samples collected from a textile industrial area in Shaoxing city, China. The abundance of microplastics varied from 2.1 to 71.0 items/L in surface water samples, and from 16.7 to 1323.3 items/kg (dw) in sediment samples. The polymer type was dominated by polyester both in water (95%) and sediment (79%) samples. The majority of the detected microplastics was predominantly colored fibers smaller than 1 mm in diameter. The high level of microplastic pollution detected in local freshwater and sediment environments was attributed to the production and trading activities of textile industries, for which severe regulations should be envisaged in the future to effectively reduce the local microplastic pollution.
اظهر المزيد [+] اقل [-]Influence on Uranium(VI) migration in soil by iron and manganese salts of humic acid: Mechanism and behavior النص الكامل
2020
Zhang, Yuan-yuan | Lv, Jun-wen | Dong, Xue-jie | Fang, Qi | Tan, Wen-fa | Wu, Xiao-yan | Deng, Qin-wen
Soil contains large amounts of humic acid (HA), iron ions and manganese ions, all of which affect U(VI) migration in the soil. HA interacts with iron and manganese ions to form HA salts (called HA-Fe and HA-Mn in this paper); however, the effects of HA-Fe and HA-Mn on the migration of U(VI) is not fully understood. In this study, HA-Fe and HA-Mn were compounded by HA interactions with ferric chloride hexahydrate and manganese chloride tetrahydrate, respectively. The influence of HA, HA-Fe and HA-Mn on U(VI) immobilization and migration was investigated by bath adsorption experiments and adsorption-desorption experiments using soil columns. The results showed that the presence of HA, HA-Fe and HA-Mn retarded the migration of U(VI) in soil. Supported by X-ray photoelectron spectroscopy (XPS) and BCR sequential extraction analyses, a plausible explanation for the retardation was that HA-Fe and HA-Mn could reduce hexavalent uranium to stable tetravalent uranium and increase the specific gravity of Fe/Mn oxide-bound uranium and organic/sulfide-bound uranium, which made it difficult for them to longitudinally migrate in soil. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and surface area and pore size analyses indicated that the complex formed between the hydroxyl, amino and carboxyl groups of HA-Fe and U(VI) increased the crystallinity of HA-Fe. The reaction between U(VI) and the hydroxyl, amino, aldehyde, keto and chlorine-containing groups of HA-Mn had no effect on the crystallinity of HA-Mn. Notably, the column desorption experiment found that the U(VI) immobilized in the soil remigrated under the effect of rain leaching, and acid rain promoted uranium remigration better than neutral rain. The findings provide some guidance for the decommissioning disposal of uranium contaminated site and it’s risk assessments.
اظهر المزيد [+] اقل [-]Data fusion for the measurement of potentially toxic elements in soil using portable spectrometers النص الكامل
2020
Xu, Dongyun | Chen, Songchao | Xu, Hanyi | Wang, Nan | Zhou, Yin | Shi, Zhou
Data fusion for the measurement of potentially toxic elements in soil using portable spectrometers النص الكامل
2020
Xu, Dongyun | Chen, Songchao | Xu, Hanyi | Wang, Nan | Zhou, Yin | Shi, Zhou
Soil contamination posed by potentially toxic elements is becoming more serious under continuously development of industrialization and the abuse of fertilizers and pesticides. The investigation of soil potentially toxic elements is therefore urgently needed to ensure human and other organisms’ health. In this study, we investigated the feasibility of the separate and combined use of portable X-ray fluorescence (pXRF) and visible near-infrared reflectance (vis-NIR) sensors for measuring eight potentially toxic elements in soil. Low-level fusion was achieved by the direct combination of the pXRF and vis-NIR spectra; middle-level fusion was achieved by the combination of selected bands of the pXRF and vis-NIR spectra using the Boruta feature selection algorithm; and high-level fusion was conducted by outer-product analysis (OPA) and Granger–Ramanathan averaging (GRA). The estimation accuracy for the eight considered elements were in the following order: Zn > Cu > Ni > Cr > As > Cd > Pb > Hg. The measurement for Cu and Zn could be achieved by pXRF spectra alone with Lin’s concordance correlation coefficient (LCCC) values of 0.96 and 0.98, and ratio of performance to interquartile distance (RPIQ) values of 2.36 and 2.69, respectively. The measurement of Ni had the highest model performance for high-level fusion GRA with LCCC of 0.89 and RPIQ of 3.42. The measurements of Cr using middle- and high-level fusion were similar, with LCCC of 0.86 and RPIQ of 2.97. The best estimation accuracy for As, Cd, and Pb were obtained by high-level fusion using OPA, with LCCC >0.72 and RPIQ >1.2. However, Hg measurement by these techniques failed, having an unacceptable performance of LCCC <0.20 and RPIQ <0.75. These results confirm the effectiveness of using portable spectrometers to determine the contents of several potentially toxic elements in soils.
اظهر المزيد [+] اقل [-]Data fusion for the measurement of potentially toxic elements in soil using portable spectrometers النص الكامل
2020
Xu, Dongyun | Chen, Songchao | Xu, Hanyi | Wang, Nan | Zhou, Yin | Shi, Zhou | Zhejiang University [Hangzhou, China] | InfoSol (InfoSol) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ministry of Agriculture
International audience | Soil contamination posed by potentially toxic elements is becoming more serious under continuously development of industrialization and the abuse of fertilizers and pesticides. The investigation of soil potentially toxic elements is therefore urgently needed to ensure human and other organisms’ health. In this study, we investigated the feasibility of the separate and combined use of portable X-ray fluorescence (pXRF) and visible near-infrared reflectance (vis-NIR) sensors for measuring eight potentially toxic elements in soil. Low-level fusion was achieved by the direct combination of the pXRF and vis-NIR spectra; middle-level fusion was achieved by the combination of selected bands of the pXRF and vis-NIR spectra using the Boruta feature selection algorithm; and high-level fusion was conducted by outer-product analysis (OPA) and Granger–Ramanathan averaging (GRA). The estimation accuracy for the eight considered elements were in the following order: Zn > Cu > Ni > Cr > As > Cd > Pb > Hg. The measurement for Cu and Zn could be achieved by pXRF spectra alone with Lin’s concordance correlation coefficient (LCCC) values of 0.96 and 0.98, and ratio of performance to interquartile distance (RPIQ) values of 2.36 and 2.69, respectively. The measurement of Ni had the highest model performance for high-level fusion GRA with LCCC of 0.89 and RPIQ of 3.42. The measurements of Cr using middle- and high-level fusion were similar, with LCCC of 0.86 and RPIQ of 2.97. The best estimation accuracy for As, Cd, and Pb were obtained by high-level fusion using OPA, with LCCC >0.72 and RPIQ >1.2. However, Hg measurement by these techniques failed, having an unacceptable performance of LCCC <0.20 and RPIQ <0.75. These results confirm the effectiveness of using portable spectrometers to determine the contents of several potentially toxic elements in soils.
اظهر المزيد [+] اقل [-]Struvite crystallization induced the discrepant transports of antibiotics and antibiotic resistance genes in phosphorus recovery from swine wastewater النص الكامل
2020
Cai, Jiasheng | Ye, Zhi-Long | Ye, Chengsong | Ye, Xin | Chen, Shaohua
Struvite (MgNH₄PO₃·6H₂O) crystallization is one of important methods of phosphorus recovery from wastewater. As to livestock wastewater, the high-strength occurrence of antibiotics and antibiotic resistance genes might induce struvite recovery to spread antibiotic resistance to the environment. However, limited information has been reported on the simultaneous transport of antibiotics and ARGs in struvite recovery. In the present study, tetracyclines (TCs) and tetracyclines antibiotic resistance genes (ARGs) were selected as the targeted pollutants, and their discrepant residues in struvite recovery from swine wastewater were investigated. TCs and ARGs were obviously detected, with their contents of 4.88–79.5 mg/kg and 6.99 × 10⁷–2.14 × 10¹¹ copies/g, notably higher than those of TCs 0.550–1.94 mg/kg and ARGs 3.98 × 10⁴–5.66 × 10⁷ copies/g obtained from synthetic wastewater. The correlational relationship revealed that predominant factors affecting TCs and ARGs transports were different. Results from network analyses indicated that among the total edges, the negative correlations between TCs and ARGs predominately occupied 18.0%. The redundancy analysis revealed that mineral components in the recovered products, including struvite, K-struvite and amorphous calcium phosphate, coupling with organic contents, displayed insignificant roles on TCs residues, where heavy metals exerted positive and remarkable functions to boost TCs migration. Unexpectedly, mineral components and heavy metals did not displayed significant promotion on ARGs transport as a whole.
اظهر المزيد [+] اقل [-]Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal النص الكامل
2020
Alkurdi, Susan S.A. | Al-Juboori, Raed A. | Bundschuh, Jochen | Bowtell, Les | McKnight, Stafford
This study examined arsenite [As(III)], arsenate [As(V)] and fluoride (F⁻) removal potential of bone char produced from sheep (Ovis aries) bone waste. Pyrolysis conditions tested were in the 500 °C–900 °C range, for a holding time of 1 or 2 h, with or without N₂ gas purging. Previous bone char studies mainly focused on either low or high temperature range with limited information provided on As(III) removal. This study aims to address these gaps and provide insights into the effect of pyrolysis conditions on bone char sorption capacity. A range of advanced chemical analyses were employed to track the change in bone char properties. As pyrolysis temperature and holding time increased, the resulting pH, surface charge, surface roughness, crystallinity, pore size and CEC all increased, accompanied by a decrease in the acidic functional groups and surface area. Pyrolysis temperature was a key parameter, showing improvement in the removal of both As(III) and As(V) as pyrolysis temperature was increased, while As(V) removal was higher than As(III) removal overall. F⁻ removal displayed an inverse relationship with increasing pyrolysis temperature. Bone char prepared at 500 °C released significantly more dissolved organic carbon (DOC) then those prepared at a higher temperature. The bone protein is believed to be a major factor. The predominant removal mechanisms for As were surface complexation, precipitation and interaction with nitrogenous functional groups. Whereas F⁻ removal was mainly influenced by interaction with oxygen functional groups and electrostatic interaction. This study recommends that the bone char pyrolysis temperature used for As and F⁻ removal are 900 °C and 650 °C, respectively.
اظهر المزيد [+] اقل [-]Metal oxide nanoparticles facilitate the accumulation of bifenthrin in earthworms by causing damage to body cavity النص الكامل
2020
Li, Ming | Xu, Guanghui | Yang, Xiutao | Zeng, Ying | Yu, Yong
In this study, we explored the influence of two metal oxide nanoparticles, nano CuO and nano ZnO (10, 50, 250 mg/kg), on accumulation of bifenthrin (100 μg/kg) in earthworms (Eisenia fetida) and its mechanism. The concentrations of bifenthrin in earthworms from binary exposure groups (bifenthrin + CuO and bifenthrin + ZnO) reached up to 23.2 and 28.9 μg/g, which were 2.65 and 3.32 times of that in bifenthrin exposure group without nanoparticles, respectively, indicating that nanoparticles facilitated the uptake of bifenthrin in earthworms. The contents of biomarkers (ROS, SOD, and MDA) in earthworms indicated that nanoparticles and bifenthrin caused damage to earthworms. Ex vivo test was utilized to investigate the toxic effects of the pollutants to cell membrane of earthworm coelomocytes and mechanism of increased bifenthrin accumulation. In ex vivo test, cell viability in binary exposure groups declined up to 30% and 21% compared to the control group after 24 h incubation, suggesting that coelomocyte membrane was injured by the pollutants. We conclude that nanoparticles damage the body cavity of earthworms, and thus lead to more accumulation of bifenthrin in earthworms. Our findings provide insights into the interactive accumulation and toxicity of nanoparticles and pesticides to soil organisms.
اظهر المزيد [+] اقل [-]SFPQ is involved in regulating arsenic-induced oxidative stress by interacting with the miRNA-induced silencing complexes النص الكامل
2020
Guo, Ping | Chen, Shen | Li, Daochuan | Zhang, Jinmiao | Luo, Jiao | Zhang, Aihua | Yu, Dianke | Bloom, Michael S. | Chen, Liping | Chen, Wen
Arsenic exposure contributed to the development of human diseases. Arsenic exerted multiple organ toxicities mainly by triggering oxidative stress. However, the signaling pathway underlying oxidative stress is unclear. We previously found that the expression of SFPQ, a splicing factor, was positively associated with urinary arsenic concentration in an arsenic-exposed population, suggesting an oxidative stress regulatory role for SFPQ. To test this hypothesis, we established cell models of oxidative stress in human hepatocyte cells (L02) treated with NaAsO₂. Reactive oxygen species (ROS) synthesis displayed a time- and dose-dependent increase with NaAsO₂ treatment. SFPQ suppression resulted in a 36%–53% decrease in ROS generation, leading to enhanced cellular damage determined by 8-OHdG, comet tail moment, and micronucleus analysis. Particularly, SFPQ deficiency attenuated expression of the oxidase genes DUOX1, DUOX2, NCF2, and NOX2. A fluorescent-based RNA electrophoretic mobility shift assay (FREMSA) and dual-luciferase reporter system revealed that miR-92b-5p targeted DUOX2 mRNA degradation. An RNA immunoprecipitation assay showed an interaction between SFPQ and miR-92b-5p of the miRNA-induced silencing complex (miRISC). Notably, NaAsO₂ treatment diminished the interaction between SFPQ and miR92b-5p, accompanied by decreased binding between miR-92b-5p and 3′-UTR of DUOX2. However, SFPQ deficiency suppressed the dissociation of miR-92b-5p from 3′-UTR of DUOX2, indicating that miR-92b-5p regulated the SFPQ-dependent DUOX2 expression. Taken together, we reveal that SFPQ responds to arsenic-induced oxidative stress by interacting with the miRISC. These findings offer new insight into the potential role of SFPQ in regulating cellular stress response.
اظهر المزيد [+] اقل [-]