خيارات البحث
النتائج 561 - 570 من 6,558
Dioxins and PCBs – Environment impact on freshwater fish contamination and risk to consumers النص الكامل
2020
Mikolajczyk, Szczepan | Warenik-Bany, Malgorzata | Maszewski, Sebastian | Pajurek, Marek
This paper reports polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/F) and polychlorinated biphenyls (PCB) concentrations in sediment and fish collected from Polish rivers in agricultural and urban areas and the associated risk for fish consumers. Total TEQ concentrations in fish muscles were in the range 0.29–7.25 pg WHO-TEQ g⁻¹ wet weight (w.w.). Generally, levels in sediment and fish muscles were low except for in the Vistula River in Cracow. In this fishery, total TEQ concentrations in sediments were high at 7.84 ± 1.73 pg WHO-TEQ g⁻¹ dry matter and fish were non-compliant with Commission Regulation (EU) 1259/2011/EU (3.5 pg WHO-TEQ g⁻¹ w.w. for PCDD/F and 6.5 pg WHO-TEQ g⁻¹ w.w. for total TEQ). Dioxin congener profiles in sediments were dominated by OCDD, and in the most contaminated fisheries in Cracow additionally by OCDF and 1,2,3,4,7,8-HxCDF. The most accumulated PCDD/Fs congeners in fish were 2,3,7,8-TCDF and 2,3,4,7,8-PeCDF except in Cracow, where 1,2,3,4,7,8-HxCDF dominated. The most abundant dioxin-like PCB (DL-PCB) and non-dioxin-like PCB (NDL-PCB) congeners were PCB 118 and PCB 153, respectively, both in sediment and fish muscles. The levels and profiles of contaminants in fish reflected the pollution of their environment. To characterize the potential health risk associated with dioxin and DL-PCB intake, doses ingested in two 100g portions of fish by adults and children were calculated and expressed as percentages of Tolerable Weekly Intake (TWI). Both values of TWI – that of 14 pg WHO-TEQ kg⁻¹ b.w. and the newer value of 2 pg WHO-TEQ kg⁻¹ b.w. established by the EFSA in November 2018 – were taken into account.It appears that regular consumption of some species could pose a health risk, especially those from urban areas.
اظهر المزيد [+] اقل [-]Nitrate repletion during spring bloom intensifies phytoplankton iron demand in Yangtze River tributary, China النص الكامل
2020
Nwankwegu, Amechi S. | Li, Yiping | Huang, Yanan | Wei, Jin | Norgbey, Eyram | Ji, Daobin | Pu, Yashuai | Nuamah, Linda A. | Yang, Zhengjian | Jiang, Yufeng | Paerl, Hans W.
Most aquatic systems show characteristic seasonal fluctuations in the total nutrient pool supporting primary productivity. The nutrient dynamics essentially exacerbate critical demand for the counterpart micronutrients towards achieving ecosystem equilibrium. Herein, the phytoplankton demand for iron (Fe) uptake under high concentration of nitrate-nitrogen during spring in Xiangxi Bay, China, was studied. Our result confirmed that significant Fe concentrations (P = 0.01) in both autumn (0.62 ± 0.02 mgL⁻¹) and winter (0.06 ± 0.03 mgL⁻¹) relative to spring (0.004 ± 0.01 mgL⁻¹) are linked to the low NO₃⁻N paradigms during autumn and winter. As NO₃⁻N showed a sharp increase in spring, a dramatic reduction in the Fe pool was observed in the entire tributary, driving the system to a critical Fe limited condition. Bioassay study involving Fe additions both alone and in combinations led to maximum growth stimulation with biomass as chla (16.44 ± 0.82 μgL⁻¹) and phytoplankton cell density (6.75 × 10⁶ cellsL⁻¹) which differed significantly (P = 0.03) with the control. Further, the study demonstrated that Fe additions triggered biomass productions which increased linearly with cell densities. The P alone addition caused biomass production (15.26 ± 2.51 μgL⁻¹) greater than both NO₃⁻N (9.15 ± 0.66 μgL⁻¹) and NH₄⁺N (13.65 ± 1.68 μgL⁻¹) separate additions but reported a low aggregate cell density (3.18 × 10⁶ cellsL⁻¹). This indicates that nutrient and taxonomic characteristics e.g., high cell pigment contents rather than just the cell bio-volume also determine biomass. The Bacilliarophyta, Chlorophyta, and Cryptophyta with the total extinction of Cyanophyta characterized the bloom in spring. The anthropogenic NO₃⁻N input into XXB would have driven to higher NO₃⁻N than NH₄⁺N situation, and incapacitated the Cyanophyta that preferentially utilize NH₄⁺N. Our study provides a useful report for incorporation into the monitoring programs for prudent management of phytoplankton bloom and pollution across the eutrophic systems.
اظهر المزيد [+] اقل [-]Source identification of chromium in the sediments of the Xiaoqing River and Laizhou Bay: A chromium stable isotope perspective النص الكامل
2020
He, Xiaoqing | Chen, Guojun | Fang, Ziyao | Liang, Wenjian | Li, Boda | Tang, Jianhui | Sun, Yongge | Qin, Liping
Hexavalent chromium, Cr(VI), is a heavy metal contaminant and the reduction of Cr(VI) is accompanied by large isotopic fractionation. In this study, the sources of Cr were explored using the Cr isotopic composition of sediments from the Xiaoqing River, a heavily polluted river located in the Shandong Province of China, which flows into Laizhou Bay. The results show that δ⁵³Cr values of the sediments are the highest upstream near the pollution source, and gradually decrease along the river toward the range for igneous reservoirs observed near the estuary. Based on the calculation of authigenic Cr isotopic composition (δ⁵³Crₐᵤₜₕ) using the detrital index and leaching experiments, we suggest that the authigenic Cr in the sample near the pollution source with the highest δ⁵³Crₐᵤₜₕ value mainly comes from the reduction of Cr(VI) discharged by anthropogenic activity, and authigenic Cr in other samples in the midstream with δ⁵³Crₐᵤₜₕ values slightly higher than the range of igneous reservoirs may come from natural oxidative Cr weathering products. By introducing a Rayleigh model, we calculate that at least 31%–55% of Cr(VI) in the river water had been reduced to Cr(III) near the pollution source. Due to the self-purification ability of the river, Cr(VI) was reduced; thus, there is no record of high δ⁵³Crₐᵤₜₕ values in the downstream of the Xiaoqing River and Laizhou Bay, indicating no obvious Cr pollution in these locations. The limited variation of δ⁵³Cr values for samples from a sediment core in Laizhou Bay is also indicative of no obvious Cr pollution in the history. The Cr isotopic compositions of the river sediments are useful for the identification of Cr sources and can be used to advise environmental remediation on Cr pollution.
اظهر المزيد [+] اقل [-]Immunotoxicity of microplastics and two persistent organic pollutants alone or in combination to a bivalve species النص الكامل
2020
Tang, Yu | Rong, Jiahuan | Guan, Xiaofan | Zha, Shanjie | Shi, Wei | Han, Yu | Du, Xueying | Wu, Fangzhu | Huang, Wei | Liu, Guangxu
Both microplastics and persistent organic pollutants (POPs) are ubiquitously present in natural water environment, posing a potential threat to aquatic organisms. While it has been suggested that the immune responses of aquatic organisms could be hampered by exposure to microplastics and POPs, the synergistic immunotoxic impact of these two types of pollutants remain poorly understood. In addition, little is known about the mechanism behind the immunotoxic effect of microplastics. Therefore, in the present study, the immunotoxicity of microplastics and two POPs, benzo[a]pyrene (B[a]P) and 17β-estradiol (E2), were investigated alone or in combination in a bivalve species, Tegillarca granosa. Evident immunotoxicity, as indicated by alterations of haemocyte count, blood cell composition, phagocytic activity, intracellular content of ROS, concentration of Ca²⁺ and lysozyme, and lysozyme activity, was revealed for both microplastics and the two POPs examined. In addition, the expression of six immune-, Ca²⁺ signalling-, and apoptosis-related genes was significantly altered by exposure of clams to the contaminants studied. Furthermore, the toxicity of POPs was generally aggravated by smaller microplastics (500 nm) and mitigated by larger ones (30 μm). This size dependent effect on POP toxicity may result from size dependent interactions between microplastics and POPs. Data obtained in this study also indicate that similar to exposure to B[a]P and E2, exposure to microplastics may hamper the immune responses of clams through a series of interdependent physiological and molecular processes.
اظهر المزيد [+] اقل [-]Soil acidification alters root morphology, increases root biomass but reduces root decomposition in an alpine grassland النص الكامل
2020
Wang, Peng | Guo, Jin | Xu, Xinyu | Yan, Xuebin | Zhang, Kangcheng | Qiu, Yunpeng | Zhao, Qingzhou | Huang, Kailing | Luo, Xi | Yang, Fei | Guo, Hui | Hu, Shuijin
Soil acidification has been expanding in many areas of Asia due to increasing reactive nitrogen (N) inputs and industrial activities. While the detrimental effects of acidification on forests have been extensively studied, less attention has been paid to grasslands, particularly alpine grasslands. In a soil pH manipulation experiment in the Qinghai-Tibet Plateau, we examined the effects of soil acidification on plant roots, which account for the major part of alpine plants.After three years of manipulation, soil pH decreased from 6.0 to 4.7 with the acid-addition gradient, accompanied by significant changes in the availability of soil nitrogen, phosphorus and cations. Plant composition shifted with the soil acidity, with graminoids replacing forbs. Differing from findings in forests, soil acidification in the alpine grassland increased root biomass by increasing the fraction of coarse roots and the production of fine roots, corresponding to enhanced sedge and grass biomass, respectively. In addition, litter decomposability decreased with altered root morphological and chemical traits, and soil acidification slowed root decomposition by reducing soil microbial activity and litter quality.Our results showed that acidification effect on root dynamics in our alpine grassland was significantly different from that in forests, and supported similar results obtained in limited studies in other grassland ecosystems. These results suggest an important role of root morphology in mediating root dynamics, and imply that soil acidification may lead to transient increase in soil carbon stock as root standing biomass and undecomposed root litter. These changes may reduce nutrient cycling and further constrain ecosystem productivity in nutrient-limiting alpine systems.
اظهر المزيد [+] اقل [-]Hybrid membrane with controllable surface microroughness by micro-nano structure processing for diluted PM2.5 capture النص الكامل
2020
Liao, Juan | Zhang, Yi | Yang, Huaming
Tremendous efforts have been devoted by researchers on air particulate matter pollution for the increasing harm, however, the Air Pollution Index (API) from “good” to “excellent” is something hard to achieve. Here, halloysite nanotubes/polyvinyl alcohol (HNTs/PVA) hybrid membrane with surface micro-nano structure processing using a one-step method for efficient PM₂.₅ capture was prepared. The filtration efficiency is 45.35% and the pressure drop is 41.57 Pa of composite membrane with a 60 wt% halloysite dosage. Specially, it resulted in a relatively safer PM index value of about 16.54, which tends to be more stringent than the restriction by Government of China (PM₂.₅ < 35 μg/m³). The filtration performance was mainly attributed to the controllable microroughness surface as well as the hierarchical structure constructed by one-step method, which has a functional role in obstruction and adsorption for diluted PM₂.₅. The methodology can employ halloysite onto various polymers, like polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylonitrile (PAN) and also polycaprolactone (PCL) to yield hybrid membranes with the similar modification of surface and structure. Such versatile membrane filters can be purposely designed and scaled up, which endows the existing hybrid membrane with great potentials in both residential and public areas pollution control to achieve a healthier living environment.
اظهر المزيد [+] اقل [-]Prevention and control of COVID-19 in nursing homes, orphanages, and prisons النص الكامل
2020
Wang, Jiao | Yang, Wenjing | Pan, Lijun | Ji, John S. | Shen, Jin | Zhao, Kangfeng | Ying, Bo | Wang, Xianliang | Zhang, Liubo | Wang, Lin | Shi, Xiaoming
As the number of Coronavirus Disease (2019) (COVID-19) cases increase globally, countries are taking more aggressive preventive measures against this pandemic. Transmission routes of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) include droplet and contact transmissions. There are also evidence of transmission through aerosol generating procedures (AGP) in specific circumstances and settings. Institutionalized populations without mobility and living in close proximity with unavoidable contact are especially vulnerable to higher risks of COVID-19 infection, such as the elderly in nursing homes, children in orphanages, and inmates in prisons. In these places, higher prevention and control measures are needed. In this study, we proposed prevention and control strategies for these facilities and provided practical guidance for general measures, health management, personal protection measures, and prevention measures in nursing homes, orphanages, and prisons, respectively.
اظهر المزيد [+] اقل [-]Control of the mobility of heavy metals in soil from disposal of bio-solid and olive by-product ashes using waste additives النص الكامل
2020
Vamvuka, D. | Papaiōannou, G. | Alexandrakis, S. | Stratakis, A.
In compliance to European Union directives to reuse urban wastes as secondary fuels, the aim of present work was to investigate and control the environmental impact from disposal of ashes generated by combustion of a bio-solid, an olive by-product and their blend. Two waste materials were admixed with the ash and their performance as potential stabilizers was assessed. Metals and ions leached through a soil were measured.The results showed that dissolution of some alkaline substances raised the pH of water effluents, decreasing the extractability of heavy metals from the ashes. In some cases Cr and As leached reached hazardous levels. Upon addition of waste materials to ash, the concentration of Cr in liquid extracts was reduced by 35–97%, while that of Cu and As by 100%. All heavy metal values measured in the leachates were decreased to values below legislation limits. The mineralogy, the chemistry and the pH of solids involved were key factors for the retention of elements.
اظهر المزيد [+] اقل [-]Triclosan and triclocarbon in maternal-fetal serum, urine, and amniotic fluid samples and their implication for prenatal exposure النص الكامل
2020
Bai, Xueyuan | Zhang, Bo | He, Yuan | Hong, Danhong | Song, Shiming | Huang, Yingyan | Zhang, Tao
Triclosan (TCS) and Triclocarbon (TCC) are chlorinated synthetic antimicrobial agents formaternal urinelated in quantities of consumer products. However, the biomonitoring of direct exposure reflection for fetuses are rare. In this study, we determine the concentrations of TCS and TCC in paired maternal serum, cord serum, maternal urine, and amniotic fluid samples collected from a cohort of 95 expecting mother-fetal pairs in Southern China. TCS and TCC are detected widely (detection rates: >76.9%) in maternal serum, cord serum, maternal urine, and amniotic fluid samples. TCS is found to be the predominant antimicrobial agent with median concentrations in maternal serum (1.5 ng/mL) and cord serum (1.8 ng/mL) that are one order of magnitude higher than those of tcc in maternal serum (0.085 ng/mL) and cord serum (0.052 ng/mL), respectively. Cord serum concentrations of tcs and tcc correlated well with the concentrations in maternal serum, which reflect the mothers’ contribution to fetal exposure. The higher median ratio of cord serum/maternal serumTCS (0.95) compared to that of cord serum/maternal serumTCC (0.53) indicates high placental transmission ability of TCS. Moreover, the facility to penetrate the placental barrier and hard to depurate characteristics lead to the long residence of TCS in the fetal environment, causing great concern over the prenatal exposure risks during the critical window of fetal development. This study provides a novel contribution by increasing existing knowledge on the exposure assessment of TCS and TCC during pregnancy through the exploration of matched maternal-fetal samples.
اظهر المزيد [+] اقل [-]Effect of biochar on Cd and pyrene removal and bacteria communities variations in soils with culturing ryegrass (Lolium perenne L.) النص الكامل
2020
Li, Guirong | Chen, Fukai | Jia, Shengyong | Wang, Zongshuo | Zuo, Qiting | He, Hongmou
Organic contaminations and heavy metals in soils cause large harm to human and environment, which could be remedied by planting specific plants. The biochars produced by crop straws could provide substantial benefits as a soil amendment. In the present study, biochars based on wheat, corn, soybean, cotton and eggplant straws were produced. The eggplant straws based biochar (ESBC) represented higher Cd and pyrene adsorption capacity than others, which was probably owing to the higher specific surface area and total pore volume, more functional groups and excellent crystallization. And then, ESBC amendment hybrid Ryegrass (Lolium perenne L.) cultivation were investigated to remediate the Cd and pyrene co−contaminated soil. With the leaching amount of 100% (v/w, mL water/g soil) and Cd content of 16.8 mg/kg soil, dosing 3% ESBC (wt%, biochar/soil) could keep 96.2% of the Cd in the 10 cm depth soil layer where the ryegrass root could reach, and it positively help root adsorb contaminations. Compared with the single planting ryegrass, the Cd and pyrene removal efficiencies significantly increased to 22.8% and 76.9% by dosing 3% ESBC, which was mainly related with the increased plant germination of 80% and biomass of 1.29 g after 70 days culture. When the ESBC dosage increased to 5%, more free radicals were injected and the ryegrass germination and biomass decreased to 65% and 0.986 g. Furthermore, when the ESBC was added into the ryegrass culture soil, the proportion of Cd and pyrene degrading bacteria Pseudomonas and Enterobacter significantly increased to 4.46% and 3.85%, which promoted the co−contaminations removal. It is suggested that biochar amendment hybrid ryegrass cultivation would be an effective method to remediate the Cd and pyrene co−contaminated soil.
اظهر المزيد [+] اقل [-]