خيارات البحث
النتائج 571 - 580 من 6,560
Evaluating soil and nutrients (C, N, and P) loss in Chinese Torreya plantations النص الكامل
2020
Chen, Xiongwen | Xiao, Pengfei | Niu, Jianzhi | Chen, Xi
Improper land-use changes may lead to a loss of soil resources and cause environmental pollution. Chinese Torreya plantation (hereafter CTP) is an important cash tree plantation for nuts production in the mountainous areas of subtropical China. The increasing development of CTPs, to increase seed production, can result in the complete erasure of local natural vegetation.In this study, the vulnerability to soil erosion, loss of soil organic carbon (SOC) and nutrients in CTPs due to land-use change were evaluated. The results indicated that the rates of diffusive soil erosion in the young CTPs with extreme precipitation were about six-fold higher than with the natural vegetation. At sites with a similar slope, there was no significant difference in soil erosion levels between the young and old CTPs. The old CTPs did not hold significantly higher levels of SOC and soil total nitrogen (STN) in their topsoil when compared with the young CTPs. The natural mixed broadleaved subtropical forests lost about 35% of their SOC and 25% of their STN after they were converted into CTPs, but the CTPs had higher soil total phosphorus. The C: N ratios at the different sites were close to 11:1, but the N: P ratios were diverse. There were high levels of organic carbon, nitrogen and phosphorus in stream water. Adequate coverage of natural vegetation within or around the CTPs should be maintained to decrease soil erosion and nutrient loss. Suggestions to develop CTPs while protecting the environment are discussed. Overall, it was determined that aspects of the current management practices and strategies for developing CTPs should be changed to decrease soil erosion and nutrient loss.
اظهر المزيد [+] اقل [-]Monitoring graphene oxide’s efficiency for removing Re(VII) and Cr(VI) with fluorescent silica hydrogels النص الكامل
2020
Tang, Chuanqi | Zhang, Yiming | Han, Jiangang | Tian, Ziqi | Ma, Yukun | Chen, Jianqiang
Supported carbon quantum dots (CQDs), used as fluorescent sensors for the detection of metal ions, have rarely been used to remove heavy metals from water. Nitrogen-doped CQDs immobilized in hydrophilic silica hydrogels exhibited a more superior sensitivity and selectivity for the detection of Re(VII) and Cr(VI) than other metal ions, including Fe(III), Fe(II), Zn(II), Cu(II) and Mn(II). For the first time, low limits of detection (LOD) of 2.3 μM for Re(VII) detection and 65 nM for Cr(VI) detection were reported by a facile method. Based on the high selectivity of fluorescent silica hydrogels for Re(VII) and Cr(VI) detection, the removal of Re(VII) and Cr(VI) by graphene oxide (GO) in water was monitored with the hydrogels used as a turn-off fluorescent sensing platform. The consistent results of the sorption isotherms of each metal on GO, which were obtained from the fluorescence spectra and by UV absorption, further verified the possibility of monitoring metal removal by fluorescence detection. Remarkably, GO removed 1186 mg/g of Re(VII) but only 178 mg/g of Cr(VI). The density functional theory (DFT) calculations indicated that both Re(VII) and Cr(VI) formed stable bonds with silica hydrogels, confirming that the interactions between the metal ions and the substrate would promote the fluorescence quenching of the supported CQDs. On the other hand, Re(VII) interacted more strongly with the carboxyl groups of GO than Cr(VI). In addition, a real-time detection system was designed to alarm the service life of a GO filter used for Re(VII) removal.
اظهر المزيد [+] اقل [-]Spatial contrasts in hepatic and biliary PAHs in Tilefish (Lopholatilus chamaeleonticeps) throughout the Gulf of Mexico, with comparison to the Northwest Atlantic النص الكامل
2020
Snyder, Susan M. | Olin, Jill A. | Pulster, Erin L. | Murawski, Steven A.
A multinational demersal longline survey was conducted on the Gulf of Mexico continental shelf over the years 2015 and 2016 to generate a Gulf-wide baseline of polycyclic aromatic hydrocarbon (PAH) concentrations in demersal fishes. Tilefish (Lopholatilus chamaeleonticeps) were sampled in all regions of the Gulf of Mexico for biometrics, bile, and liver. Tilefish liver was also obtained from surveys in the northwest Atlantic Ocean for comparison. Liver tissues (n = 305) were analyzed for PAHs and select alkylated homologs using QuEChERS extractions and gas chromatography tandem mass spectrometry. Bile samples (n = 225) were analyzed for biliary PAH metabolites using high-performance liquid chromatography with fluorescence detection. Spatial comparisons indicate the highest levels of PAH exposure and hepatic accumulation in the north central Gulf of Mexico, with decreasing concentrations moving from the north central Gulf counterclockwise, and an increase on the Yucatán Shelf. Hepatic PAH concentrations were similar between the Gulf of Mexico and the northwest Atlantic, however, Tilefish from the northwest Atlantic had higher concentrations and more frequent detection of carcinogenic high molecular weight PAHs. Overall, results demonstrate that PAH pollution was ubiquitous within the study regions, with recent exposure and hepatic accumulation observed in Tilefish from both the Gulf of Mexico and northwest Atlantic.
اظهر المزيد [+] اقل [-]Novel insights into effects of silicon-rich biochar (Sichar) amendment on cadmium uptake, translocation and accumulation in rice plants النص الكامل
2020
Wang, Yaofeng | Zhang, Kun | Lü, Lun | Xiao Xin, | Chen, Baoliang
The effects and mechanisms of biochars with different silicon (Si) contents on Cadmium (Cd) uptake, translocation and accumulation in rice plants are not fully understood. Herein, we report a pot study to disentangle the interaction mechanisms of Si-rich biochars (Sichar RH300, RH700) and Si-deficient biochars (WB300, WB700) with high-Si soil (HSS) and low-Si soil (LSS) on Cadmium (Cd) and Si accumulation in rice (including grains, straw, and roots). Sichar was found to be better than Si-deficient biochars in reducing Cd uptake and accumulation in rice, and RH300 amendment was better than the RH700 treatment. The surface complexation of Cd with carboxyl groups and Si from biochar led Cd immobilization in soil, as portrayed by Fourier transformed infrared spectroscopy and X-ray photoelectron spectroscopy. The high Si content of biochars indicates a relatively lower bioaccumulation factor and translocation factor of Cd. The Sichar (e.g., RH300) treatment significantly increases the silicon concentration in rice (including grains, straw, and roots), but the Si concentrations of rice grains and roots decrease with WB700-amended LSS. Negative correlations between the concentrations of rice Si and Cd were observed, which could be related to lower expression as observed by Si transport genes (Lsi1 and Lsi3) in rice by Sichar amendment. These findings suggest that the Si released from Sichars can reduce the gene expression of Si transport channel of rice roots and inhibit the transport channel of Si, thus thereby inhibiting the Cd uptake, probably due to the utilization of same channel for Cd and Si. Integrative mechanisms of Sichar (RH300 and RH700) reduced Cd plant accumulation can be proposed by soil immobilization, inhibition of root transport, and prevention of plant translocation.
اظهر المزيد [+] اقل [-]Effects of short-term exposure to environmentally-relevant concentrations of benzo(a)pyrene-sorbed polystyrene to White seabass (Atractoscion nobilis)☆ النص الكامل
2020
Coffin, Scott | Magnuson, Jason T. | Vliet, Sara M.F. | Volz, David C. | Schlenk, Daniel
Plastic marine debris hyper-concentrates hydrophobic contaminants such as polycyclic aromatic hydrocarbons (PAHs) and can transfer these sorbed contaminants to biota following ingestion. PAHs are known to induce cardiotoxicity and visual toxicity at sublethal doses. Juvenile White seabass (Atractoscion nobilis) fish were fed environmentally relevant concentrations of either virgin polystyrene or benzo(a)pyrene (BaP)-sorbed polystyrene for 5 days and were monitored for changes in phototactic response, swimming behavior, and hepatic cytochrome p450 1A (CYP1A) enzyme activity. No significant differences in the monitored endpoints were recorded in fish that ingested either polystyrene or BaP-sorbed polystyrene relative to control fish following the short-term exposure. However, fish exposed to 252 μg/L BaP alone as a positive control had significantly elevated CYP1A enzyme activity (p = 0.046) and impaired phototactic response (p = 0.020), though no altered swimming behavior was observed (p = 0.843) relative to control fish. These results demonstrate that pelagic fish ingesting environmentally relevant concentrations of BaP-sorbed polystyrene for a short, 5-day duration do not demonstrate measurable changes in vision, swimming activity, nor CYP1A activity. High variability within enzyme activity and behavioral responses suggest that lack of significant effects may be due to low sample size.
اظهر المزيد [+] اقل [-]A comparative study of root cadmium radial transport in seedlings of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation النص الكامل
2020
Liu, Yuankun | Lu, Min | Tao, Qi | Luo, Jipeng | Li, Jinxing | Guo, Xinyu | Liang, Yongchao | Yang, Xiaoe | Li, Tingqiang
The radial transport of cadmium (Cd) is essential for Cd influx in roots. The role of radial transport pathway on the Cd translocation from root to shoot among wheat genotypes are still poorly understood. This study explored the role of apoplastic and symplastic pathway on root Cd uptake and root-to-shoot translocation in Zhenmai 10 (ZM10, high Cd in grains) and Aikang 58 (AK58, low Cd in grains). Under Cd treatment, the deposition of Casparian strips (CSs) and suberin lamellae (SL) initiated closer to the root apex in ZM10 than that in AK58, which resulted in the lower Cd concentration in apoplastic fluid of ZM10. Simultaneously, Cd-induced expression levels of genes related to Cd uptake in roots were significantly higher in AK58 by contrast with ZM10, contributing to the symplastic Cd accumulation in AK58 root. Moreover, the addition of metabolic inhibitor CCCP noticeably decreased the Cd accumulation in root of both genotypes. Intriguingly, compared to ZM10, greater amounts of Cd were sequestrated in the cell walls and vacuoles in roots of AK58, limiting the translocation of Cd from root to shoot. Furthermore, the elevated TaHMA2 expression in ZM10 indicates that ZM10 had a higher capacity of xylem loading Cd than AK58. All of these results herein suggest that the radial transport is significant for Cd accumulation in roots, but it cannot explain the difference in root-to-shoot translocation of Cd in wheat genotypes with contrast Cd accumulation in grains.
اظهر المزيد [+] اقل [-]Effects of the long-term application of atrazine on soil enzyme activity and bacterial community structure in farmlands in China النص الكامل
2020
Liu, Yufei | Fan, Xiaoxu | Zhang, Tong | He, Wenyuan | Song, Fuqiang
Atrazine has been used on Chinese farmlands for a long time and over a wide range. The concentration of atrazine (1.86–1100 mg kg⁻¹) has exceeded the allowable limit in the soil (1.0 mg kg⁻¹), and concern is increasing about the potential harm to farmland soil. Four treatments (AT₀, AT₆, AT₁₀, AT₁₆) were established to reveal the effects of the long-term application of atrazine on soil health. The results showed a nonlinear regulation of the atrazine residue concentrations in the four treatments. The highest concentration of atrazine residue was in AT₆, at 167 mg kg⁻¹, and the lowest concentration of atrazine residue was in AT₁₆, at 102 mg kg⁻¹, but there was no significant difference between AT₁₀ and AT₁₆. The soil urease activity decreased significantly with the increase in the years of atrazine application, the saccharase and cellulase activities in the AT₆ were significantly higher than those observed in the other three treatments, the catalase activity gradually decreased with the increase in atrazine application years, and the activity in AT₆ was significantly higher than that in AT₁₆. A total of 238 genera were identified by Illumina MiSeq sequencing, and 28 dominant genera were screened. Atrazine significantly increased the relative abundance of Actinobacteria and contributed to the relative abundance of Rubrobacter, Blastococcus, Promicromonospora, Jiangella, Psychroglaciecola and Acetobacteraceae_uncultured, which exhibited significantly higher abundance in AT₁₆ than in AT₀. Although there were atrazine-degrading bacteria in the soil, and the atrazine residue decreased with the increase in application years, the concentration of the atrazine residue was still nearly 100 times higher than the allowable limit in the soil, which is a great threat to the soil health.
اظهر المزيد [+] اقل [-]Nitrogen and sulfur co-doped biochar derived from peanut shell with enhanced adsorption capacity for diethyl phthalate النص الكامل
2020
Guo, Ruishui | Yan, Lili | Rao, Pinhua | Wang, Runkai | Guo, Xin
Doping of nitrogen and sulfur on biochar (NS-B) was investigated by a novel and improved method for diethyl phthalate (DEP) removal. The preparation parameters including pyrolysis temperature and size of peanut shell biochar as well as thiourea/biochar mass ratio were selected as independent variables at three levels by applying the Box-Behnken design. The ANOVA results indicated that thiourea/biochar mass ratio exhibited the most significant effect. The comprehensive effects of the three factors on DEP removal efficiency were further elaborated, combining with the characterization results of the obtained NS-B materials. The formation of the pyridinic N and oxidized S groups examined by XPS was responsible for enhancing the DEP removal efficiency. The adsorption kinetic model fitting illustrated that large micropores and numerous adsorption sites improved the adsorption capacity of NS-B. According to the adsorption isotherm model fitting, NS-B (temperature 375 °C, size 300 mesh and thiourea/biochar mass ratio 0.1) possessed much higher maximum adsorption capacity for DEP (14.34 mg g⁻¹) than biochar (6.57 mg g⁻¹). NS-B exhibited excellent reusability towards DEP removal after five times recycling. Moreover, NS-B also had the potential in peroxydisulfate activation. These findings provide new insights into the environmental implications of NS-B.
اظهر المزيد [+] اقل [-]Co-effect of minerals and Cd(II) promoted the formation of bacterial biofilm and consequently enhanced the sorption of Cd(II) النص الكامل
2020
Xu, Shaozu | Xing, Yonghui | Liu, Song | Luo, Xuesong | Chen, Wenli | Huang, Qiaoyun
Heavy metal pollution is very common in soils. Soils are complex systems including minerals, bacteria, and various other substances. In Cd(II) contaminated soil, the combined effects of clay minerals and heavy metals on bacterial biofilm and Cd(II) adsorption are unappreciated. Our study showed that the combination of clay minerals (goethite, kaolinite, and montmorillonite) and heavy metals promoted Serratia marcescens S14 biofilm development significantly more than clay minerals or Cd(II) alone. The amount of biofilm after binary treatment with clay minerals and Cd(II) was 2.3–7.3 times than that in control. Mineral-induced cell death and the expression of the fimA, bsmA, and eps were key players in biofilm formation. Binary treatment with montmorillonite and Cd(II) significantly enhanced biofilm development and consequently increased the adsorption of Cd(II). Cd(II) removal is the result of co-adsorption of bacteria and minerals. Bacterial biofilm played an important role in Cd(II) adsorption. FTIR spectroscopy showed the components of biofilm were not affected by minerals and revealed the functional groups –OH, –NH, –CH₂, –SH, –COO participated in Cd(II) immobilization. Our findings are of fundamental significance for understanding how minerals and Cd(II) affect biofilms and thereby enhance Cd(II) adsorption and predicting the mobility and fate of heavy metals in heavy metal-contaminated soil.
اظهر المزيد [+] اقل [-]Effective degradation of phenol via catalytic wet peroxide oxidation over N, S, and Fe-tridoped activated carbon النص الكامل
2020
Yang, Guo | Mo, Sha | Xing, Bo | Dong, Jingwen | Song, Xiang | Liu, Xingyong | Yuan, Jigang
The N, S, and Fe-tridoped carbon catalysts (NSFe-Cs), Fe/ACNS1 and Fe/ACNS2, were synthesized by wet impregnation with different concentration of ammonium ferrous sulfate solution. The prepared catalysts have a similar textural structure. The N species, S species, Feᴵᴵ and Feᴵᴵᴵ were simultaneously introduced onto the surface of catalysts. Comparison with the only Fe doped catalyst, NSFe-Cs showed greater stability and higher phenol removal in catalytic wet peroxide oxidation at different reaction condition. The main intermediates including p-hydroxybenzoic acid, formic acid, and maleic acid were determined in the treated wastewater. The high catalytic activity for NSFe-C was related to the ability of H₂O₂ decomposition. NSFe-Cs have more amount of Feᴵᴵ partially due to the formation of FeS₂, which promoted the decomposition of H₂O₂ on Fe/ACNS1 and Fe/ACNS2 surface. The generation of ·OH and ·HO₂/·O₂⁻ radicals in the bulk solution was crucial to phenol degradation, and the decomposition of H₂O₂ complied with the pseudo-first-order kinetics. The highly linear relationship between decomposition kinetic constant for H₂O₂ and the amount of surface groups suggested, including Feᴵᴵ species, pyridinic N/Fe-bonded N, pyrrolic N as well as graphitic N were responsible to the high activity of NSFe-Cs.
اظهر المزيد [+] اقل [-]