خيارات البحث
النتائج 581 - 590 من 6,473
Dosage effects of lincomycin mycelial residues on lincomycin resistance genes and soil microbial communities
2020
Wang, Mengmeng | Liu, Huiling | Dai, Xiaohu
Lincomycin mycelial residues (LMRs) are one kind of byproduct of the pharmaceutical industry. Hydrothermal treatment has been used to dispose of them and land application is an attractive way to reuse the treated LMRs. However, the safe dose for soil amendment remains unclear. In this study, a lab-scale incubation experiment was conducted to investigate the influence of the amendment dosage on lincomycin resistance genes and soil bacterial communities via quantitative PCR and 16S rRNA sequencing. The results showed that introduced lincomycin degraded quickly in soil and became undetectable after 50 days. Degradation rate of the high amendment amount (100 mg kg−1) was almost 4 times faster than that of low amendment amount (10 mg kg−1). Moreover, the introduced LMRs induced the increase of lincomycin resistance genes after incubation for 8 days, and two genes (lmrA and lnuB) showed a dosage-related increase. For example, the abundance of gene lmrA was 17.78, 74.13 and 128.82 copies g−1 soil for lincomycin concentration of 10, 50 and 100 mg kg−1, respectively. However, the abundance of lincomycin resistance genes recovered to the control level as the incubation period extended to 50 days, indicating a low persistence in soil. In addition, LMRs application markedly shifted the bacterial composition and significant difference was found between control soil, 10 mg kg−1 and 50 mg kg−1 lincomycin amended soil. Actually, several genera bacteria were significantly related to the elevation of lincomycin resistance genes. These results provided a comprehensive understanding of the effects of lincomycin dosage on the fate of resistance genes and microbial communities in LMRs applied soil.
اظهر المزيد [+] اقل [-]Exploring plastic-induced satiety in foraging green turtles
2020
Santos, Robson G. | Andrades, Ryan | Demetrio, Guilherme Ramos | Kuwai, Gabriela Miki | Sobral, Mañana Félix | Vieira, Júlia de Souza | Machovsky-Capuska, Gabriel E.
In the last decade many studies have described the ingestion of plastic in marine animals. While most studies were dedicated to understanding the pre-ingestion processes involving decision-making foraging choices based on visual and olfactory cues of animals, our knowledge in the post-ingestion consequences remains limited. Here we proposed a theoretical complementary view of post-ingestion consequences, attempting to connect plastic ingestion with plastic-induced satiety. We analyzed data of plastic ingestion and dietary information of 223 immature green turtles (Chelonia mydas) from tropical Brazilian reefs in order to understand the impacts of plastic ingestion on foraging behavior. Generalized linear mixing models and permutational analysis of variance suggested that plastic accumulations in esophagus, stomach and intestine differed in their impact on green turtle’s food intake. At the initial stages of plastic ingestion, where the plastic still in the stomach, an increase in food intake was observed. The accumulation of plastic in the gastrointestinal tract can reduce food intake likely leading to plastic-induced satiety. Our results also suggest that higher amounts of plastics in the gastrointestinal tract may led to underweight and emaciated turtles. We hope that adopting and refining our proposed framework will help to clarify the post-ingestion consequences of plastic ingestion in wildlife.
اظهر المزيد [+] اقل [-]Effects of short-term exposure to environmentally-relevant concentrations of benzo(a)pyrene-sorbed polystyrene to White seabass (Atractoscion nobilis)☆
2020
Coffin, Scott | Magnuson, Jason T. | Vliet, Sara M.F. | Volz, David C. | Schlenk, Daniel
Plastic marine debris hyper-concentrates hydrophobic contaminants such as polycyclic aromatic hydrocarbons (PAHs) and can transfer these sorbed contaminants to biota following ingestion. PAHs are known to induce cardiotoxicity and visual toxicity at sublethal doses. Juvenile White seabass (Atractoscion nobilis) fish were fed environmentally relevant concentrations of either virgin polystyrene or benzo(a)pyrene (BaP)-sorbed polystyrene for 5 days and were monitored for changes in phototactic response, swimming behavior, and hepatic cytochrome p450 1A (CYP1A) enzyme activity. No significant differences in the monitored endpoints were recorded in fish that ingested either polystyrene or BaP-sorbed polystyrene relative to control fish following the short-term exposure. However, fish exposed to 252 μg/L BaP alone as a positive control had significantly elevated CYP1A enzyme activity (p = 0.046) and impaired phototactic response (p = 0.020), though no altered swimming behavior was observed (p = 0.843) relative to control fish. These results demonstrate that pelagic fish ingesting environmentally relevant concentrations of BaP-sorbed polystyrene for a short, 5-day duration do not demonstrate measurable changes in vision, swimming activity, nor CYP1A activity. High variability within enzyme activity and behavioral responses suggest that lack of significant effects may be due to low sample size.
اظهر المزيد [+] اقل [-]Influence of some physicochemical parameters on the passive sampling of copper (II) from aqueous medium using a polymer inclusion membrane device
2020
González-Albarrán, René | de Gyves, Josefina | Rodríguez de San Miguel, Eduardo
Recently polymer inclusion membranes (PIMs) have been proposed as materials for passive sampling, nonetheless a theoretical base to describe the mass transfer process through those materials, under such conditions of monitoring, has not been elucidated. Under the assumption that: (i) the transport of the metal ion occurs at steady state conditions, (ii) the concentration gradients are linear, and (iii) the kinetics of the chemical reactions in the extraction process on the membrane are elemental; an equation for the passive sampling of copper (II) using a PIM system containing Kelex-100 as carrier is derived. The prediction capacity of this sampler under different conditions of temperature, metal concentration, flow velocity, ionic strength and pH is analyzed as well. Among the dependencies of the PIM on the physicochemical conditions, effects of concentration, temperature and flow velocity tend to increment copper (II) flux across the membrane, being the parameter temperature the one with the most pronounced effect at T ≥ 30 °C. Ionic strength had no great effect on passive sampler response, however the sampler is dependent on the acidity of the medium. The comparable metal ion concentrations estimated from the PIM sampler to those obtained by direct measurements of the sampling medium suggest that PIMs can be robust materials when used as passive sampler devices.
اظهر المزيد [+] اقل [-]Hexavalent chromium induces mitochondrial dynamics disorder in rat liver by inhibiting AMPK/PGC-1α signaling pathway
2020
Yang, Qingyue | Han, Bing | Xue, Jiangdong | Lv, Yueying | Li, Siyu | Liu, Yan | Wu, Pengfei | Wang, Xiaoqiao | Zhang, Zhigang
Occupational exposure to hexavalent chromium (Cr(VI)) can cause cytotoxicity and carcinogenicity. In this study, we established a liver injury model in rats via intraperitoneal injection of potassium dichromate (0, 2, 4, and 6 mg/kg body weight) for 35 d to investigate the mechanism of Cr(VI)-induced liver injury. We found that Cr(VI) induced hepatic histopathological lesions, oxidative stress, and apoptosis and reduced the expression of mitochondrial-related regulatory factors such as adenosine 5′-monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in a dose-dependent manner. Furthermore, Cr(VI) promoted mitochondrial division and inhibited fusion, leading to increased expression of caspase-3 and production of mitochondrial reactive oxygen species. Our study demonstrates that long-term exposure to Cr(VI) induces mitochondrial dynamics disorder by inhibiting AMPK/PGC-1α signaling pathway in rat liver.
اظهر المزيد [+] اقل [-]Tracing veterinary antibiotics in the subsurface – A long-term field experiment with spiked manure
2020
Mehrtens, Anne | Licha, Tobias | Broers, Hans Peter | Burke, Victoria E. (Victoria Elizabeth)
The purpose of this long-term experiment was on gaining more insights into the environmental behaviour of veterinary antibiotics in the subsurface after application with manure. Therefore, manure spiked with a bromide tracer and eight antibiotics (enrofloxacin, lincomycin, sulfadiazine, sulfamethazine, tetracycline, tiamulin, tilmicosin and tylosin) in concentrations of milligrams per litre were applied at an experimental field site. Their pathway was tracked by continuous extraction of soil pore water at different depths and systematic sampling of groundwater for a period of two years. Seven target compounds were detected in soil pore water of which four leached into groundwater. Concentrations of the detected target compounds were, with few exceptions, in the range of nanograms per litre. It was concluded that a large fraction of the investigated antibiotics sorbed or degraded already within the first meter of the soil. Further, it was inferred from the data that long and warm dry periods cause attenuation of the target compounds through increased degradation or sorption occurring in the soil. In addition, the comprehensive data-set allowed to estimate a retardation factor between 1.1 and 2.0 for sulfamethazine in a Plaggic Anthrosol soil, and to classify the individual compounds by environmental relevance based on transport behaviour and persistence. According to the distribution of resistant genes in the environment, sulfamethazine was found to be the most mobile and persistent substance.
اظهر المزيد [+] اقل [-]Nitrogen induced DOC and heavy metals leaching: Effects of nitrogen forms, deposition loads and liming
2020
Zia, Afia | van den Berg, Leon | Riaz, Muhammad | Arif, Muhammad | Zia, Dania | Khan, Shawana J. | Ahmad, Muhammad Nauman | Attaullah, | Ahsmore, Mike
Atmospheric nitrogen (N) deposition is believed to accelerate dissolved organic carbon (DOC) production and could lead to increased heavy metal mobility into water resources. We sampled intact soil cores from the Isle of Skye with low background N deposition history and having Serpentine rock known for its higher heavy metal concentrations including zinc (Zn), copper (Cu), nickel (Ni) and lead (Pb). The effects of 16 (16kgN) and 32 kg N ha⁻¹ year⁻¹ (32kgN), and liming with 32kgN (32kgN+Lime) on soil solution chemistry and heavy metal mobilization were investigated over the 15-month study. Nitrogen in deposition load was added at five ammonium (NH₄⁺) to nitrate (NO₃⁻) ratios of 9:1, 5:1, 1:1, 1:5 and 1:9 along NO₃⁻dominance. We found significant effects of load on Cu and NH₄⁺/NO₃⁻ ratio on pH, DOC and Zn in soil solution. However, under lime and ratio experimental factors, liming significantly influenced pH, DOC, Cu and Pb, and NH₄⁺/NO₃⁻ ratio pH, DOC, Ni and Zn whereas interactions between lime and ratio was significant for Ni and Cu. pH and DOC increased with N load, liming and NO₃⁻ dominance, and both correlated significantly positively. Liming under NH₄⁺ dominance enhanced DOC production due to supply of base cations in lime. Mobilization of Cu, Ni and Pb was driven by DOC concentrations and, therefore, increased with load, liming and NO₃⁻ dominance in deposition. However, in contrast, low pH and high NH₄⁺ dominance was associated with Zn mobilization in soil solution. On the contrary, despite of some patterns, heavy metals in soil HNO₃ extracts were devoid of any load, lime and NH₄⁺/NO₃⁻ ratio effects. Our study suggests that the effects of N load and forms in deposition on sites with high accumulated loads of metals need to be better quantified through soil solution partitioning models.
اظهر المزيد [+] اقل [-]Hydroquinone exposure alters the morphology of lymphoid organs in vaccinated C57Bl/6 mice
2020
Fabris, André Luis | Nunes, Andre Vinicius | Schuch, Viviane | de Paula-Silva, Marina | Rocha, GHO | Nakaya, Helder I. | Ho, Paulo Lee | Silveira, Eduardo L.V. | Farsky, Sandra Helena Poliselli
The influenza is a common viral infection that can be fatal, especially in high-risk groups such as children, pregnant women, elderly, and immune-deficient individuals. Vaccination is the most efficient approach to prevent the spreading of viral infection and promote individual and public health. In contrast, exposure to environmental pollutants such as cigarette smoke reduces the efficacy of vaccination. We investigated whether chronic exposure to hydroquinone (HQ), the most abundant compound of the tobacco particulate phase, could impair the adaptive immune responses elicited by influenza vaccination. For this, adult male C57BL/6 mice were daily exposed to either nebulized HQ or PBS for 1 h for a total of eight weeks. At weeks 6 and 8, the mice were primed and boosted with the trivalent influenza vaccine via IM respectively. Although the HQ exposure did not alter the body weight of the mice and the biochemical and hematological parameters, the pollutant increased the oxidative stress in splenocytes of immunized animals, modified the morphology of spleen follicles, and augmented the size of their lymph nodes. The lymphoid organs of HQ-exposed mice presented a similar number of vaccine-specific IgG-secreting cells, titers of vaccine-specific total IgG, and respective subclasses. Transcriptome studies with HQ, benzene, or cigarette smoke exposure were also analyzed. The genes up-regulated upon pollutant exposure were associated with neutrophil migration and were shown to be co-expressed with antibody-secreting cell genes. Therefore, these findings suggest that HQ exposure may trigger an immune-compensatory mechanism that enhances the humoral responses induced by influenza vaccination.
اظهر المزيد [+] اقل [-]Intraspecific interactions affect outcomes of pulse toxicity at different Daphnia magna population phases
2020
Woo, Timothy J. | East, Andrew | Salice, Christopher J.
Traditional toxicity tests assess stressor effects on individuals, while protection goals are focused on the population-level and above. Additionally, these tests ignore common ecological factors such as resource levels and population growth phase. The objective of this research was to explore effects of – and interactions between – resource availability and stress response at the individual and population levels using Daphnia magna as a model. We hypothesized that density-dependent changes in resources at various phases of population growth would cause different population responses to the same toxicant stress. Laboratory populations of Daphnia magna were exposed to a 48-h pulse of 20 or 30 μg/l pyraclostrobin in one of four distinct phases of laboratory population cycles: growth, peak, decline, and stable. Population size and recovery were observed throughout the 51-day study. Populations exposed to pyraclostrobin during the growth phase had the least mortality and fastest recovery, while populations in the peak phase had the greatest mortality and slowest recovery. These data suggested that high density and low food at the peak phase resulted in more sensitive daphnids. To further test this hypothesis, a resource-amended acute toxicity study was conducted to quantify the effects of food resource on pyraclostrobin toxicity to Daphnia magna. Three age classes of Daphnia magna (neonate, subadult, adult) were fed low or high food levels and exposed to pyraclostrobin for 48 h. Toxicity was greater, as shown by lower 48 h LC50s, for smaller Daphnia magna age classes and lower food levels comporting results in the population study. Importantly, the acute toxicity studies generally yielded lower effect levels than the population studies suggesting that while the standard acute studies are ecologically unrealistic, they may be protective of toxicity under some circumstances. Collectively, these data point to the importance of population phase and the resource environment in modulating toxicity.
اظهر المزيد [+] اقل [-]Distribution, source, and ecological risks of polycyclic aromatic hydrocarbons in Lake Qinghai, China
2020
Cao, Yuanxin | Lin, Chunye | Zhang, Xuan | Liu, Xitao | He, Mengchang | Ouyang, Wei
Contamination by polycyclic aromatic hydrocarbons (PAHs) has been observed at high elevation environments; however, the occurrence and spatial variation of PAHs in alpine lakes of China is not well understood. We measured 15 priority PAHs in the sediments of Lake Qinghai in the Qinghai-Tibet Plateau, and assessed their distribution, source, and ecological risks. The total PAH concentration ranged from 30.4 to 125.2 ng g⁻¹. Low molecular weight PAHs were dominant in the sediments, suggesting a local source for the emissions. Sediment sites closer to local settlements and rivers had higher concentration of PAHs. The concentration of PAHs was significantly correlated with pH, probably as a result of the high salinity of the lake, while it was not significantly correlated with organic matter content. Molecular diagnostic ratio analysis indicated that PAHs were derived mainly from coal and biomass combustion. Specifically, the positive matrix factorization model showed that petrogenic sources, vehicular emissions, biomass combustion, and coal combustion contributed for 11.6, 16.3, 23.6, and 48.5% of the PAHs, respectively. The risk quotient method was used to assess ecological risk of PAHs individually. The results indicate that indeno[1,2,3-cd]pyrene, benzo[b]fluoranthene, benzo[a]pyrene, phenanthrene, and anthracene would produce moderate ecological risks in 5, 20, 65, 100, and 100% of the sediment sites, respectively, while the other 10 PAH homologues would scarcely produce any serious ecological risk. We used the hierarchical Archimedean copula integral assessment model to evaluate the integral risk of PAHs. The result showed that 10, 40, and 50% of the sediment sites belong to mid-high, low, and mid-low risk levels, respectively. The current concentration and risk levels of PAHs in this study might be used as a baseline to assess the influence of future anthropogenic activities.
اظهر المزيد [+] اقل [-]