خيارات البحث
النتائج 591 - 600 من 7,292
Synthesis of a robust, water-stable, and biodegradable pulp foam by poly-lactic acid coating towards a zero-plastic earth النص الكامل
2022
Zhang, Yuxiang | Liao, Jianming | Li, Jun | Guo, Shasha | Mo, Lihuan | Liu, Zhan | Xiong, Qingang
Biodegradable cellulosic pulp foams with robustness and water resistance are urgently needed in nowadays to replace petroleum-based plastic foams for environmental sustainability. In this work, a facile protocol to fabricate robust poly-lactic acid (PLA) coated cellulose foams (PCCF) was developed through a combined water-based foaming and PLA melt-coating process using pulp as the raw material. In the synthesis, the so-called PLA coating was realized through melting PLA powders dispersed between fibers by an in-situ heating and post cooling process. Performance tests revealed that the incorporation of PLA coating significantly enhances mechanical strength, water stability, and biodegradability of the synthesized PCCF samples compared with conventional cellulosic foams. Specifically, the low-density PCCF were observed with mechanical strength up to 81.24 kPa, high water stability, and more than 95% degradation in 56 days. As the fabrication process is simple and pulp is highly cost competitive, our proposed synthesis strategy makes the PCCF a promising substitute for petroleum-based plastic foams at large-scale production.
اظهر المزيد [+] اقل [-]Impact of resuspended mine tailings on benthic biodiversity and ecosystem processes: The case study of Portmán Bay, Western Mediterranean Sea, Spain النص الكامل
2022
Gambi, Cristina | Canals, M. (Miquel) | Corinaldesi, Cinzia | Dell’Anno, Antonio | Manea, Elisabetta | Pusceddu, Antonio | Sanchez-Vidal, Anna | Danovaro, Roberto
Industrial seabed mining is expected to cause significant impacts on marine ecosystems, including physical disturbance and the generation of plumes of toxin-laden water. Portmán Bay (NW Mediterranean Sea), where an estimated amount of 60 Mt of mine tailings from sulphide ores were dumped from 1957 to 1990, is one of the most metal-polluted marine areas in Europe and worldwide. This bay can be used to assess the impact on marine ecosystems of particle settling from sediment plumes resulting from mine tailings resuspension. With this purpose in mind, we conducted a field experiment there to investigate subsequent effects of deposition of (artificially resuspended) contaminated sediments on (i) prokaryotic abundance and meiofaunal assemblages (in terms of abundance and diversity), (ii) the availability of trophic resources (in terms of organic matter biochemical composition), and (iii) a set of ecosystem functions including meiofaunal biomass, heterotrophic C production and C degradation rates. The results of this study show that mine tailings resuspension and plume deposition led to the decline of prokaryotic abundance and nematode's biodiversity. The later decreased because of species removal and transfer along with particle resuspension and plume deposition. Such changes were also associated to a decrease of the proteins content in the sediment organic matter, faster C degradation rates and higher prokaryotic C production. Overall, this study highlights that mine tailing resuspension and ensuing particle deposition can have deleterious effects on both prokaryotes and nematode diversity, alter biogeochemical cycles and accelerate C degradation rates. These results should be considered for the assessment of the potential effects of seabed mineral exploitation on marine ecosystems at large.
اظهر المزيد [+] اقل [-]Biotransformation of graphene oxide within lung fluids could intensify its synergistic biotoxicity effect with cadmium by inhibiting cellular efflux of cadmium النص الكامل
2022
Zhu, Jianqiang | Liu, Leyi | Ma, Juan | Fu, Qingfeng | Zheng, Zhiwen | Du, E | Xu, Yong | Zhang, Zhihong
Graphene oxide (GO) has been widely studied and applied in numerous industrial fields and biomedical fields for its excellent physical and chemical properties. Along with the production and applications of GO persist increasing, the environmental health and safety risk (EHS) of GO has been widely studied. However, previous studies almost focused on the biotoxicity of pristine GO under a relatively high exposure dose, without considering its transformation process within environmental and biological mediums. Meanwhile, its secondary toxicity or synergistic effects have not been taken seriously. Here, two different kinds of artificial lung fluids were adopted to incubate pristine GO to mimic the biotransformation process of GO in the lung fluids. And, we explored that biotransformation within the artificial lung fluids could significantly change the physicochemical properties of GO and could enhance its biotoxicity. To reveal the synergistic effects of GO and toxic metal ions, we uncovered that GO could enhance the intracellular content of metal ions by inhibiting the efflux function of ATP binding cassette (ABC) transporters which are distributed on the cellular membrane, and artificial lung fluids incubation of GO could enhance this synergistic effect. Finally, toxic metal ions induced a series of toxic reactions through oxidative stress response and promoted cell death. Moreover, consistent with the results of in vitro experiments, the lungs of mice exposed to GOs combined with Cd exhibited significant inflammation and oxidative stress compared with Cd treatment alone, and it was more remarkable within the mice which were treated with bio-transformed GOs. In summary, this study explored the impact and mechanism of biotransformation of GO in the lung fluids on the synergistic and secondary effects between GO and metal ions.
اظهر المزيد [+] اقل [-]Enhanced removal of per- and polyfluoroalkyl substances in complex matrices by polyDADMAC-coated regenerable granular activated carbon النص الكامل
2022
Ramos, Pia | Singh Kalra, Shashank | Johnson, Nicholas W. | Khor, Chia Miang | Borthakur, Annesh | Cranmer, Brian | Dooley, Gregory | Mohanty, Sanjay K. | Jassby, David | Blotevogel, Jens | Mahendra, Shaily
Granular activated carbon (GAC) has been used to remove per- and polyfluoroalkyl substances (PFASs) from industrial or AFFF-impacted waters, but its effectiveness can be low because adsorption of short-chained PFASs is ineffective and its sites are exhausted rapidly by co-contaminants. To increase adsorption of anionic PFASs on GAC by electrostatic attractions, we modified GAC's surface with the cationic polymer poly diallyldimethylammonium chloride (polyDADMAC) and tested its capacity in complex water matrices containing dissolved salts and humic acid. Amending with concentrations of polyDADMAC as low as 0.00025% enhanced GAC's adsorption capacity for PFASs, even in the presence of competing ions. This suggests that electrostatic interactions with polyDADMAC's quaternary ammonium functional groups helped bind organic and inorganic ions as well as the headgroup of short-chain PFASs, allowing more overall PFAS removal by GAC. Evaluating the effect of polymer dose is important because excessive addition can block pores and reduce overall PFAS removal rather than increase it. To decrease the waste associated with this adsorption strategy by making the adsorbent viable for more than one saturation cycle, a regeneration method is proposed which uses low-power ultrasound to enhance the desorption of PFASs from the polyDADMAC-GAC with minimum disruption to the adsorbent's structure. Re-modification with the polymer after sonication resulted in a negligible decrease in the sorbent's capacity over four saturation rounds. These results support consideration of polyDADMAC-modified GAC as an effective regenerable adsorbent for ex-situ concentration step of both short and long-chain PFASs from real waters with high concentrations of competing ions and low PFAS loads.
اظهر المزيد [+] اقل [-]Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar for enhancing the degradation of sulfathiazole antibiotics by peroxymonosulfate and its effects on bacterial community dynamics النص الكامل
2022
Hung, Chang-Mao | Chen, Chiu-Wen | Huang, Jinbao | Dong, Cheng-Di
Metal-free single heteroatom (N, O, and B)-doped coconut-shell biochar (denoted as N-CSBC, O-CSBC, and B-CSBC, respectively) were fabricated in a one-step pyrolysis process to promote peroxymonosulfate (PMS) activation for the elimination of sulfathiazole (STZ) from aquaculture water. B-CSBC exhibited remarkably high catalytic activity with 92% of STZ degradation in 30 min attributed to the presence of meso-/micro-pores and B-containing functional groups (including B–N, B–C, and B₂O₃ species). Radical quenching tests revealed SO₄•⁻, HO•, and ¹O₂ being the major electron acceptors contributing to STZ removal by PMS over B-CSBC catalyst. The B-CSBC catalyst has demonstrated high sustainability in multiple consecutive treatment cycles. High salinity and the presence of inorganic ions such as chloride, enhanced the performance of the sulfate radical-carbon-driven advanced oxidation processes (SR–CAOPs) as pretreatment strategy that significantly facilitated the removal of STZ from aquaculture water. Furthermore, a potential sulfonamide-degrading microorganism, Cylindrospermum_stagnale, belonging to the phylum Cyanobacteria, was the dominant functional bacteria according to the results of high-throughput 16S rRNA gene sequencing conducted after the B-CSBC/PMS treatment. This study provides new insights into the SR–CAOP combined with bioprocesses for removing STZ from aqueous environments.
اظهر المزيد [+] اقل [-]Effect of sampling duration on the estimate of pollutant concentration behind a heavy-duty vehicle: A large-eddy simulation النص الكامل
2022
Xie, Jingwei | Liu, Chun-Ho | Huang, Yuhan | Mok, Wai-Chuen
Plume chasing is cost-effective, measuring individual, on-road vehicular emissions. Whereas, wake-flow-generated turbulence results in intermittent, rapid pollutant dilution and substantial fluctuating concentrations right behind the vehicle being chased. The sampling duration is therefore one of the important factors for acquiring representative (average) concentrations, which, however, has been seldom addressed. This paper, which is based on the detailed spatio-temporal dispersion data after a heavy-duty truck calculated by large-eddy simulation (LES), examines how sampling duration affects the uncertainty of the measured concentrations in plume chasing. The tailpipe dispersion is largely driven by the jet-like flows through the vehicle underbody with approximate Gaussian concentration distribution for x ≤ 0.6h, where x is the distance after the vehicle and h the characteristic vehicle size. Thereafter for x ≥ 0.6h, the major recirculation plays an important role in near-wake pollutant transport whose concentrations are highly fluctuating and positively shewed. Plume chasing for a longer sampling duration is more favourable but is logistically impractical in busy traffic. Sampling duration, also known as averaging time in the statistical analysis, thus has a crucial role in sampling accuracy. With a longer sampling (averaging) duration, the sample mean concentration converges to the population mean, improving the sample reliability. However, this effect is less pronounced in long sampling duration. The sampling accuracy is also influenced by the locations of sampling points. For the region x > 0.6h, the sampling accuracy is degraded to a large extent. As a result, acceptable sample mean is hardly achievable. Finally, frequency analysis unveils the mechanism leading to the variance in concentration measurements which is attributed to sampling duration. Those data with frequency higher than the sampling frequency are filtered out by moving average in the statistical analyses.
اظهر المزيد [+] اقل [-]Effects of heavy metals pollution on the co-selection of metal and antibiotic resistance in urban rivers in UK and India النص الكامل
2022
Gupta, Sonia | Graham, David W. | Sreekrishnan, T.R. | Ahammad, Shaikh Ziauddin
Heavy metal pollution and the potential for co-selection of resistance to antibiotics in the environment is growing concern. However, clear associations between heavy metals and antibiotic resistance in river systems have not been developed. Here we investigated relationships between total and bioavailable heavy metals concentrations; metal resistance gene (MRG) and antibiotic resistance gene (ARG) abundances; mobile genetic elements; and the composition of local bacterial communities in low and high metal polluted rivers in UK and India. The results indicated that MRGs conferring resistance to cobalt (Co) and nickel (Ni) (rcnA), and Co, zinc (Zn), and cadmium (Cd) (czcA), and ARGs conferring resistance to carbapenem and erythromycin were the dominating resistant genes across the samples. The relative MRGs, ARGs, and integrons abundances tended to increase at high metal polluted environments, suggesting high metals concentrations have a strong potential to promote metal and antibiotic resistance by horizontal gene transmission and affecting bacterial communities, leading to the development of multi-metal and multi-antibiotic resistance. Network analysis demonstrated the positive and significant relationships between MRGs and ARGs as well as the potential for integrons playing a role in the co-transmission of MRGs and ARGs (r > 0.80, p < 0.05). Additionally, the major host bacteria of various MRGs and ARGs that could be accountable for greater MRGs and ARGs levels at high metal polluted environments were also identified by network analysis. Spearman's rank-order correlations and RDA analysis further confirm relationships between total and bioavailable heavy metals concentrations and the relative MRG, ARG, and integron abundances, as well as the composition of related bacterial communities (r > 0.80 (or < −0.80), p < 0.05). These findings are critical for assessing the possible human health concerns associated with metal-driven antibiotic resistance and highlight the need of considering metal pollution for developing appropriate measures to control ARG transmission.
اظهر المزيد [+] اقل [-]Synthesis and characterization of lanthanum-based metal organic framework decorated polyaniline for effective adsorption of lead ions from aqueous solutions النص الكامل
2022
Govarthanan, M. | Jeon, Chang-Hyun | Kim, Woong
The novel La-MOF@x%PANI composite was synthesized via a two-step procedure with ultra-sonication, and the adsorption mechanism of Pb²⁺ ions from synthetic aqueous solutions was systematically studied. The Pb²⁺ adsorption on the La-MOF@x%PANI was evaluated by the Fourier transform infrared spectroscopy, powder X-ray diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray analysis, Brunauer–Emmett–Teller analysis, X-ray photoelectron spectroscopy, and elemental mapping analyses. The effects of the adsorption-influencing parameters, including contact time, solution pH, and co-existing cations on the maximum adsorption capacity of Pb²⁺ onto the prepared composite material were investigated. Moreover, the adsorption of Pb²⁺ ions could be eliminated with rapid adsorption kinetics using the water-stable La-MOF@x%PANI composite. The as-synthesized La-MOF@50%PANI exhibited excellent adsorption performance toward Pb²⁺ ions with an extraordinary adsorption capacity of 185.19 mg/g at pH 6. The Pb²⁺ adsorption onto the La-MOF@x%PANI composite follows the pseudo-second-order kinetics and fits well with the Langmuir isotherm model, indicating the Pb²⁺ adsorption depended on the solution pH as the adsorption mechanism was mainly governed by the electrostatic attraction. Notably, La-MOF@x%PANI composite possesses outstanding regeneration ability and stability after up to four successive cycles. The satisfactory findings reflect that the La-MOF@50%PANI hybrid composite holds a great promise for remediating Pb²⁺ ions from aqueous environments.
اظهر المزيد [+] اقل [-]Microplastics removal from a primary settler tank in a wastewater treatment plant and estimations of contamination onto European agricultural land via sewage sludge recycling النص الكامل
2022
Lofty, J. | Muhawenimana, V. | Wilson, C.A.M.E. | Ouro, P.
Wastewater treatment plants (WwTPs) remove microplastics (MPs) from municipal sewage flow, with the resulting bulk of MPs being concentrated within generated sewage sludge which is frequently recycled back onto agricultural land as accepted practice in many European countries as a sustainable fertiliser resource. This circular process means that MPs successfully removed from WwTPs are deposited into the soil and able to return into the natural watercourse by means of run-off or infiltration to groundwater. This study quantifies the removal efficiency of MPs with size ranging between 1000 and 5000 μm in a primary settlement tank (PST) at a WwTP serving a population equivalent of 300,000 and provides MP concentrations in the generated sewage sludge. Our study revealed that the proportion of MPs partitioning in a PST to settled sludge, floating scum and effluent was 96%, 4% and 0% respectively, implying 100% removal of MPs of 1000–5000 μm in size. The generated sewage sludge was estimated to contain concentrations of approximately 0.01 g of MPs or 24.7 MP particles per g of dry sewage sludge solid, equivalent to ∼1% of the sewage sludge weight. Using these figures and data from the European Commission and Eurostat, the potential yearly MP contamination onto soils throughout European nations is estimated to be equivalent to a mass of MPs ranging between 31,000 and 42,000 tonnes (considering MPs 1000–5000 μm in size) or 8.6×10¹³–7.1×10¹⁴ MP particles (considering MPs 25–5000 μm in size). An estimated maximum application rate of 4.8 g of MP/m²/yr or 11,489 MP particles/m²/yr, suggests that the practice of spreading sludge on agricultural land could potentially make them one of the largest global reservoirs of MP pollution. Hence, recycling raw sewage sludge onto agricultural soils should be reviewed to avoid introducing extreme MP pollution into the environment.
اظهر المزيد [+] اقل [-]Impact of benzo[a]pyrene with other pollutants induce the molecular alternation in the biological system: Existence, detection, and remediation methods النص الكامل
2022
Saravanakumar, Kandasamy | Sivasantosh, Sugavaneswaran | Sathiyaseelan, Anbazhagan | Sankaranarayanan, Alwarappan | Naveen, Kumar Vishven | Zhang, Xin | Jamla, Monica | Vijayasarathy, Sampathkumar | Vishnu Priya, Veeraraghavan | MubarakAli, Davoodbasha | Wang, Myeong-Hyeon
The exposure of benzo [a]pyrene (BaP) in recent times is rather unavoidable than ever before. BaP emissions are sourced majorly from anthropogenic rather than natural provenance from wildfires and volcanic eruptions. A major under-looked source is via the consumption of foods that are deep-fried, grilled, and charcoal smoked foods (meats in particular). BaP being a component of poly aromatic hydrocarbons has been classified as a Group I carcinogenic agent, which has been shown to cause both systemic and localized effects in animal models as well as in humans; has been known to cause various forms of cancer, accelerate neurological disorders, invoke DNA and cellular damage due to the generation of reactive oxygen species and involve in multi-generational phenotypic and genotypic defects. BaP's short and accumulated exposure has been shown in disrupting the fertility of gamete cells. In this review, we have discussed an in-depth and capacious run-through of the various origins of BaP, its economic distribution and its impact as well as toxicological effects on the environment and human health. It also deals with a mechanism as a single compound and its ability to synergize with other chemicals/materials, novel sensitive detection methods, and remediation approaches held in the environment.
اظهر المزيد [+] اقل [-]