خيارات البحث
النتائج 611 - 620 من 4,043
Tracking aquaculture-derived fluoroquinolones in a mangrove wetland, South China النص الكامل
2016
Liu, Xiao | Liu, Yu | Xu, Jian-Rong | Ren, Ke-Jun | Meng, Xiang-Zhou
Aquaculture in mangrove wetlands has been developed rapidly, causing various environmental problems (e.g., antibiotic residue). In the present study, the levels and distributions of a well-known class of antibiotics (fluoroquinolones; FQs), including norfloxacin (NOR), ciprofloxacin (CIP), and enrofloxacin (ENR), were examined in sediment and mangrove plant (Aegiceras corniculatum) from a mangrove wetland in the Zhanjiang Mangrove National Nature Reserve, South China. NOR and CIP were detected in all sediment samples, with concentrations ranging from 4.3 to 64.2 ng/g and from 7.62 to 68.5 ng/g on a basis of dry weight (dw), respectively, whereas ENR was found with relatively lower frequency (<78%) and lower concentrations (<19.3 ng/g). Sediments in mangrove rhizosphere area contained considerably higher concentrations of all FQs (except for ENR). FQs were largely varied in mangrove plant tissues; NOR and ENR were not detected in leaf and root samples, respectively. CIP featured an increasing tendency from the root to the upper parts of plants, whereas a decreasing trend was found for NOR. Three bioconcentration factors (BCFs) of FQs, including BCFs for roots (BCFr), branches (BCFb), and leaves (BCFl) were calculated, and most of them exceeded 1. Especially for NOR, its BCFr can reach up to 9.9, indicating that Aegiceras corniculatum has a strong ability to accumulate FQs from sediment and/or surrounding environment. For NOR and CIP, strong positive relationships were observed between BCFr and concentrations in root, but no significant correlations were observed between BCFr and root lipid of mangrove plant. More studies are needed to investigate the uptake mechanism of antibiotics in mangrove plants.
اظهر المزيد [+] اقل [-]The identification of the metabolites of chlorothalonil in zebrafish (Danio rerio) and their embryo toxicity and endocrine effects at environmentally relevant levels النص الكامل
2016
Zhang, Quan | Ji, Chenyang | Yan, Lu | Lu, Meiya | Lu, Chensheng | Zhao, Meirong
Chlorothalonil is a broad spectrum fungicide with high annual production and environmental contamination. Despite its high consumption, studies regarding the potential ecological risks of chlorothalonil, especially its metabolites, to aquatic organisms are still limited. In this study, we selected the zebrafish (Danio rerio) as the in vivo model and first identified the metabolite (4-hydroxychlorothalonil) of chlorothalonil in zebrafish by tandem quadrupole/orthogonal-acceleration time-of-flight (Q-TOF). Then, the in vivo and in vitro models were applied to comprehensively estimate the embryo toxicity and potential endocrine effect of chlorothalonil and 4-hydroxychlorothalonil. The data from zebrafish embryo toxicity showed that the lowest observed effect concentrations of both chlorothalonil and 4-hydroxychlorothalonil were 50 μg/L after 96 h of exposure. The mortality rate of the 4-hydroxychlorothalonil was 2.6-fold higher than that of the parent compound at the concentration of 50 μg/L. Dual-luciferase reporter gene assays indicated that both chlorothalonil and 4-hydroxychlorothalonil exerted estrogen receptor α (ERα) agonist activity with REC20 values of 2.4 × 10−8 M and 3.6 × 10−8 M, respectively. However, only 4-hydroxychlorothalonil exhibited both thyroid receptor β (TRβ) agonistic and antagonistic activities. Lastly, we employed molecular docking to predict the binding affinity of chlorothalonil and 4-hydroxychlorothalonil with ERα or TRβ. The results revealed that the potential endocrine effect of chlorothalonil and 4-hydroxychlorothaloni might be attributed to the different binding affinities with the receptors. In conclusion, our studies revealed that 4-hydroxychlorothalonil exhibited potent endocrine-disrupting effects compared to its parent compound, chlorothalonil. The results provided here remind us that the assessment of the potential ecological and health risks of the metabolites of fungicides in addition to their parent compounds should arouse great concerns.
اظهر المزيد [+] اقل [-]In situ ingestion of microfibres by meiofauna from sandy beaches النص الكامل
2016
Gusmão, Felipe | Domenico, Maikon Di | Amaral, A. Cecília Z. | Martínez, Alejandro | Gonzalez, Brett C. | Worsaae, Katrine | Ivar do Sul, Juliana A. | Lana, Paulo da Cunha
Microfibres are widespread contaminants in marine environments across the globe. Detecting in situ ingestion of microfibres by small marine organisms is necessary to understand their potential accumulation in marine food webs and their role in marine pollution. We have examined the gut contents of meiofauna from six sandy beaches in the Atlantic Ocean and the Mediterranean. Out of twenty taxonomic groups, three species of the common sandy beach annelid Saccocirrus displayed in situ ingestion of microfibres in all sites. Laboratory observations showed that species of Saccocirrus are able to egest microfibres with no obvious physical injury. We suggest that their non-selective microphagous suspension-feeding behaviour makes Saccocirrus more prone to ingest microfibres. Although microfibres are rapidly egested with no apparent harm, there is still the potential for trophic transfer into marine food webs through predation of Saccocirrus.
اظهر المزيد [+] اقل [-]UV filters induce transcriptional changes of different hormonal receptors in Chironomus riparius embryos and larvae النص الكامل
2016
Ozáez, Irene | Aquilino, Mónica | Morcillo, Gloria | Martínez-Guitarte, José-Luis
Organic ultraviolet (UV) filters are emerging contaminants that are ubiquitous in fresh and marine aquatic systems due to their extensive use in cosmetics, plastics, paints, textiles, and many other industrial products. The estrogenic effects of organic UV filters have been long demonstrated in vertebrates, and other hormonal activities may be altered, according to more recent reports. The impact of UV filters on the endocrine system of invertebrates is largely unknown. We have previously reported that some UV filters may affect ecdysone-related genes in the aquatic insect Chironomus riparius, an ecotoxicologically important model organism. To further analyze other possible effects on endocrine pathways, we first characterized four pivotal genes related with hormonal pathways in insects; thereafter, these genes were assessed for alterations in transcriptional activity after exposure to 4-methylbenzylidene camphor (4MBC) or benzophenone-3 (BP-3), two extensively used sunscreens. We found that both chemicals disturbed the expression of all four genes analyzed: hormonal receptor 38 (HR38), methoprene-tolerant (Met), membrane-associate progesterone receptor (MAPR) and insulin-like receptor (INSR), measured by changes in mRNA levels by real-time PCR. An upregulatory effect at the genomic level was detected in different developmental stages. Interestingly, embryos appeared to be more sensitive to the action of the UV filters than larvae. Our results suggest that the risk of disruption through different endocrine routes is not negligible, considering the significant effects of UV filters on key hormonal receptor and regulatory genes. Further effort is needed to develop environmental risk assessment studies on these pollutants, particularly for aquatic invertebrate model organisms.
اظهر المزيد [+] اقل [-]Initial hazard screening for genotoxicity of photo-transformation products of ciprofloxacin by applying a combination of experimental and in-silico testing النص الكامل
2016
Toolaram, Anju Priya | Haddad, Tarek | Leder, Christoph | Kümmerer, Klaus
Ciprofloxacin (CIP) is a broad-spectrum antibiotic found within μg/L concentration range in the aquatic environment. It is a known contributor of umuC induction in hospital wastewater samples. CIP can undergo photolysis to result in many transformation products (TPs) of mostly unknown toxicity. The aims of this study were to determine the genotoxicity of the UV mixtures and to understand the possible genotoxic role of the stable TPs. As such, CIP and its UV-irradiated mixtures were investigated in a battery of genotoxicity and cytotoxicity in vitro assays. The combination index (CI) analysis of residual CIP in the irradiated mixtures was performed for the umu assay. Further, Quantitative Structure–Activity Relationships (QSARs) predicted selected genotoxicity endpoints of the identified TPs. CIP achieved primary elimination after 128 min of irradiation but was not completely mineralized. Nine photo-TPs were identified. The irradiated mixtures were neither mutagenic in the Ames test nor genotoxic in the in vitro micronucleus (MN) test. Like CIP, the irradiated mixtures were umuC inducing. The CI analysis revealed that the irradiated mixtures and the corresponding CIP concentration in the mixtures shared similar umuC potentials. QSAR predictions suggested that the TPs may be capable of inducing chromosome aberration, MN in vivo, bacterial mutation and mammalian mutation. However, the experimental testing for a few genotoxic endpoints did not show significant genotoxic activity for the TPs present as a component of the whole mixture analysis and therefore, further genotoxic endpoints may need to be investigated to fully confirm this.
اظهر المزيد [+] اقل [-]N-fixation in legumes – An assessment of the potential threat posed by ozone pollution النص الكامل
2016
Hewitt, D.K.L. | Mills, G. | Hayes, F. | Norris, D. | Coyle, M. | Wilkinson, S. | Davies, W.
The growth, development and functioning of legumes are often significantly affected by exposure to tropospheric ozone (O3) pollution. However, surprisingly little is known about how leguminous Nitrogen (N) fixation responds to ozone, with a scarcity of studies addressing this question in detail. In the last decade, ozone impacts on N-fixation in soybean, cowpea, mung bean, peanut and clover have been shown for concentrations which are now commonly recorded in ambient air or are likely to occur in the near future. We provide a synthesis of the existing literature addressing this issue, and also explore the effects that may occur on an agroecosystem scale by predicting reductions in Trifolium (clovers) root nodule biomass in United Kingdom (UK) pasture based on ozone concentration data for a “high” (2006) and “average” ozone year (2008). Median 8% and 5% reductions in clover root nodule biomass in pasture across the UK were predicted for 2006 and 2008 respectively. Seasonal exposure to elevated ozone, or short-term acute concentrations >100 ppb, are sufficient to reduce N-fixation and/or impact nodulation, in a range of globally-important legumes. However, an increasing global burden of CO2, the use of artificial fertiliser, and reactive N-pollution may partially mitigate impacts of ozone on N-fixation.
اظهر المزيد [+] اقل [-]Environmental pollution of electronic waste recycling in India: A critical review النص الكامل
2016
Awasthi, Abhishek Kumar | Zeng, Xianlai | Li, Jinhui
The rapid growth of the production of electrical and electronic products has meant an equally rapid growth in the amount of electronic waste (e-waste), much of which is illegally imported to India, for disposal presenting a serious environmental challenge. The environmental impact during e-waste recycling was investigated and metal as well as other pollutants [e.g. polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs)] were found in excessive levels in soil, water and other habitats. The most e-waste is dealt with as general or crudely often by open burning, acid baths, with recovery of only a few materials of value. As resulted of these process; dioxins, furans, and heavy metals are released and harmful to the surrounding environment, engaged workers, and also residents inhabiting near the sites. The informal e-waste sectors are growing rapidly in the developing countries over than in the developed countries because of cheapest labor cost and week legislations systems. It has been confirmed that contaminates are moving through the food chain via root plant translocation system, to the human body thereby threatening human health. We have suggested some possible solution toward in which plants and microbes combine to remediate highly contaminated sites.
اظهر المزيد [+] اقل [-]Water soluble and insoluble components of urban PM2.5 and their cytotoxic effects on epithelial cells (A549) in vitro النص الكامل
2016
Zou, Yajuan | Jin, Chengyu | Su, Yue | Li, Jiaru | Zhu, Bangshang
When PM2.5 enters human bodies, the water soluble (WS-PM2.5) and insoluble components (WIS-PM2.5) of PM2.5 would interact with cells and cause adverse effects. However, the knowledge about the individual toxicity contribution of these two components is limited. In this study, the physiochemical properties of PM2.5 were well characterized. The toxic effects of WS-PM2.5 and WIS-PM2.5, which include the cell viability, cell membrane damage, reactive oxygen species (ROS) generation and morphological changes, were examined with human lung epithelial A549 cells in vitro. The results indicated that WS-PM2.5 could induce the early response of ROS generation, multiplied mitochondria and multi-lamellar bodies in A549 cells, which might cause cell damage through oxidative stress. Meanwhile, WIS-PM2.5 was predominantly associated with the cell membrane disruption, which might lead to the cell damage through cell-particle interactions. Moreover, the synergistic cytotoxic effects of WS-PM2.5 and WIS-PM2.5 were observed at longer exposure time. These findings demonstrate the different cytotoxicity mechanisms of WS-PM2.5 and WIS-PM2.5, which suggest that not only the size and dosage of PM2.5 but also the solubility of PM2.5 should be taken into consideration when evaluating the toxicity of PM2.5.
اظهر المزيد [+] اقل [-]Influence of trophic ecology on the accumulation of dioxins and furans (PCDD/Fs), non-ortho polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) in Mediterranean gulls (Larus michahellis and L. audouinii): A three-isotope approach النص الكامل
2016
Roscales, Jose L. | Vicente, Alba | Muñoz-Arnanz, Juan | Morales Diez de Ulzurrun, Laura | Abad, Esteban | Aguirre, Jose I. | Jiménez, Begoña
The impact of pollution caused by severe anthropogenic pressure in the Mediterranean Sea, an important biodiversity hotspot, requires continuous research efforts. Sources of highly toxic chemicals such as Persistent Organic Pollutants (POPs) are misunderstood in representative Mediterranean species, which limits our capability to establish proper conservation strategies. In the present study, eggs of Audouin's and yellow-legged gulls (Larus audouinii and L. michahellis) were used to investigate the trophic sources, as measured by δ13C, δ15N, and δ34S, of legacy POPs, in particular, polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and non-ortho polychlorinated biphenyls (no-PCBs), as well as recently-regulated POPs, e.g., polybrominated diphenyl ethers (PBDEs). Special attention was paid to the usefulness of rarely-explored δ34S ratios in explaining POP exposure in wildlife, and δ34S was the isotopic ratio that best explained POP variations among gulls in most cases, thus demonstrating its usefulness for understanding POP exposure in wildlife. Significant relationships between stable isotope signatures and POP concentrations revealed increasing levels of no-PCBs and low halogenated PCDD/Fs and PBDEs in Mediterranean gulls as the consumption of marine resources increases. In contrast, highly chlorinated and brominated congeners appeared to preferentially accumulate in gulls feeding primarily on refuse from dump sites and terrestrial food webs. The use of suitable dietary tracers in the study of POPs in yellow-legged gulls revealed the importance of dump sites as a source of POPs in Mediterranean seabirds, which has not previously been reported. In contrast, the preferential accumulation through marine food webs of low chlorinated PCCD/Fs and no-PCBs, which show the highest toxic equivalents factors (TEFs), led to a significantly greater toxicological concern in Audouin's as compared to yellow-legged gulls. Audouin's gull exposure to POPs appears primarily related to the pelagic food webs commonly exploited by fisheries, highlighting the need for further research given the potential impact on human consumption.
اظهر المزيد [+] اقل [-]Palladium nanoparticles exposure: Evaluation of permeation through damaged and intact human skin النص الكامل
2016
Larese Filon, Francesca | Crosera, Matteo | Mauro, Marcella | Baracchini, Elena | Bovenzi, Massimo | Montini, Tiziano | Fornasiero, Paolo | Adami, Gianpiero
The intensified use of palladium nanoparticles (PdNPs) in many chemical reactions, jewellery, electronic devices, in car catalytic converters and in biomedical applications lead to a significant increase in palladium exposure. Pd can cause allergic contact dermatitis when in contact with the skin. However, there is still a lack of toxicological data related to nano-structured palladium and information on human cutaneous absorption. In fact, PdNPs, can be absorbed through the skin in higher amounts than bulk Pd because NPs can release more ions. In our study, we evaluated the absorption of PdNPs, with a size of 10.7 ± 2.8 nm, using intact and damaged human skin in Franz cells. 0.60 mg cm−2 of PdNPs were applied on skin surface for 24 h. Pd concentrations in the receiving solutions at the end of experiments were 0.098 ± 0.067 μg cm−2 and 1.06 ± 0.44 μg cm−2 in intact skin and damaged skin, respectively. Pd flux permeation after 24 h was 0.005 ± 0.003 μg cm−2 h−1 and 0.057 ± 0.030 μg cm−2 h−1 and lag time 4.8 ± 1.7 and 4.2 ± 3.6 h, for intact and damaged skin respectively.This study indicates that Pd can penetrate human skin.
اظهر المزيد [+] اقل [-]