خيارات البحث
النتائج 611 - 620 من 6,548
Particulate matter pollution and hospital outpatient visits for endocrine, digestive, urological, and dermatological diseases in Nanjing, China النص الكامل
2020
Wang, Ce | Zhu, Guangcan | Zhang, Lei | Chen, Kai
Clinical or pathological evidence demonstrated that air pollution could undermine other organ systems of human body besides respiratory and circulation systems. Investigations that directly relate hospital outpatient visits for endocrine (ENDO), digestive (DIGE), urological (UROL), and dermatological (DERM) diseases categories with ambient particulate matter (PM) are still lacking, particularly in heavily polluted cities. Here, we conducted a time-series analysis using 812,624, 1,111,342, 539,803, and 741,662 hospital visits for ENDO, DIGE, UROL, and DERM, respectively, in Nanjing, China from 2013 to 2019. A generalized additive model was applied to estimate the exposure-response associations. Results showed that a 10 μg/m³ increase in PM₂.₅ concentration on lag 0 day was significantly associated with 0.59% (95% CI: 0.30%, 0.88%), 0.43% (0.15%, 0.70%), 0.36% (0.06%, 0.66%), and 0.65% (0.42%, 0.87%) increase for ENDO, DIGE, UROL, and DERM hospital visits, respectively. The estimated effects of PM₁₀ were slightly smaller but still statistically significant. The magnitude and significance of the associations between PM and four health outcomes were sensitive to additional adjustment for co-pollutants. Exposure-response relationships were linear for PM concentrations lower than 100 μg/m³ but the curves became nonlinear across the full range of exposures due to a flatten slope at higher concentrations. We also explored the effect modifications by season (cold or warm), age (5–18, 18–64, 65–74, or 75+ years), and sex (male or female). Results showed that the DERM-related population aged 65 years or older was more vulnerable to PM exposure, compared with the 5 to 17-year age group; the DERM-related population aged 75 years or older and 65 years or older was more vulnerable to PM₂.₅ and PM₁₀ exposure, respectively, compared with the 18 to 64-year age group. Our study provided suggestive evidence that ambient PM pollution was associated with ENDO, DIGE, UROL, and DERM outpatient hospital visits in Nanjing, China.
اظهر المزيد [+] اقل [-]Global N6-methyladenosine profiling of cobalt-exposed cortex and human neuroblastoma H4 cells presents epitranscriptomics alterations in neurodegenerative disease-associated genes النص الكامل
2020
Tang, Jianping | Zheng, Chunyan | Zheng, Fuli | Li, Yuqing | Wang, Yuanliang | Aschner, Michael | Guo, Zhenkun | Yu, Guangxia | Wu, Siying | Li, Huangyuan
Excessive exposure to cobalt (Co) is known to make adverse impact on the nervous system, but its detailed mechanisms of neurotoxicity have yet to be determined. In this study, C57BL/6 mice (0, 4, 8, 16 mg/kg CoCl₂, 30 days) and human neuroblastoma H4 cells (0, 100, 400, 600 μM CoCl₂) were used as in vivo and in vitro models. Our results revealed that CoCl₂ intraperitoneal injection caused significant impairments in learning and memory, as well as pathological damage in the nervous system. We further certificated the alteration of m⁶A methylation induced by CoCl₂ exposure. Our findings demonstrate for the first time, significant differences in the degree of m⁶A modification, the biological function of m⁶A-modified transcripts between cortex and H4 cell samples. Specifically, MeRIP-seq and RNA-seq elucidate that CoCl₂ exposure results in differentially m⁶A-modified and expressed genes, which were enriched in pathways involving synaptic transmission, and central nervous system (CNS) development. Mechanistic analyses revealed that CoCl₂ remarkably changed m⁶A modification level by affecting the expression of m⁶A methyltransferase and demethylase, and decreasing the activity of demethylase. We observed variation of m⁶A modification in neurodegenerative disease-associated genes upon CoCl₂ exposure and identified regulatory strategy between m⁶A and potential targets mRNA. Our novel findings provide novel insight into the functional roles of m⁶A modification in neurodegenerative damage caused by environmental neurotoxicants and identify Co-mediated specific RNA regulatory strategy for broadening the epigenetic regulatory mechanism of RNA induced by heavy metals.
اظهر المزيد [+] اقل [-]Contribution of aquatic products consumption to total human exposure to PAHs in Eastern China: The source matters النص الكامل
2020
Wang, Qian | Chu, Lanlan | Peng, Fei | Li, Juan-Ying | Chen, Hongjie | Jin, Ling
Demand for aquatic products surges, due to the increasing concerns on high-quality nutrition and food security. Eastern China is the leading area in contributing significantly to both production and consumption of aquatic products from inland aquaculture, coastal fishing, and distant-water fishing. It is imperative to comprehensively assess the dietary risks of common chemical hazards, such as polycyclic aromatic hydrocarbons (PAHs) in aquatic products of these supply origins, and the contribution of aquatic product consumption to total human exposure. The observed body loads of total PAHs in the coastal aquatic products varied significantly, indicating an unstable food quality from the east coast of China. In the meantime, benzo[a]pyrene equivalent concentrations (BaPₑq) exhibited the highest level in the aquatic products from inland farm ponds. High BaPₑq, along with high consumption of inland aquaculture products, led to higher corresponding cumulative carcinogenic risks (ILCRs) than the other two kinds of products, which further indicate that the origins and consumption rates of the aquatic products do matter. Furthermore, it is confirmed that the consumption of aquatic products is an important contributor to the total daily exposure to PAHs, especially for children and pregnant women. Finally, it is necessary to apply practical remediation in aquaculture farm ponds to provide high-quality products, especially for the population groups of children and pregnant women, and alleviate the exposure and risk due to the PAHs in aquatic products.
اظهر المزيد [+] اقل [-]Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution النص الكامل
2020
Gong, Jing | Qi, Jianhua | E, Beibei | Yin, Yidan | Gao, Dongmei
Bacteria are important components of bioaerosols with the potential to influence human health and atmospheric dynamics. However, information on the concentrations and influencing factors of viable bacteria is poorly understood. In this study, size-segregated bioaerosol samples were collected from Aug. 2017 to Feb. 2018 in the coastal region of Qingdao, China. The total microbes and viable/non-viable bacteria in the samples were measured using an epifluorescence microscope after staining with the DAPI (4′, 6-diamidino-2-phenylindole) and LIVE/DEAD® BacLight™ Bacterial Viability Kit, respectively. The concentrations of non-viable bacteria increased when the air quality index (AQI) increased from <50 to 300, with the proportion of non-viable bacteria to total microbes increasing from (11.1 ± 12.0)% at an AQI of <50 to (18.4 ± 14.7)% at an AQI of >201. However, the concentrations of viable bacteria decreased from (2.12 ± 2.04) × 10⁴ cells·m⁻³ to (9.00 ± 1.72) × 10³ cells·m⁻³ when the AQI increased from <50 to 150. The ratio of viable bacteria to total bacteria (viability) decreased from (31.0 ± 14.7)% at 0 < AQI<50 to (8.6 ± 1.0)% at 101 < AQI<150 and then increased to (9.6 ± 5.3)% at an AQI of 201–300. The results indicated that the bacterial viability decreased when air pollution occurred and increased again when pollution became severe. The mean size distribution of non-viable bacteria exhibited a bimodal distribution pattern at an AQI<50 with two peaks at 2.1–3.3 μm and >7.0 μm, while the viable bacteria had two peaks at 1.1–2.1 μm and >7 μm. When the AQI increased from 101 to 300, the size distribution of viable/non-viable bacteria varied with an increased proportion of fine particles. The multiple linear regression analysis results verified that the AQI and PM₁₀ had important effects on the concentrations of non-viable bacteria. These results highlight impacts of air pollution on viable/non-viable bacteria and the interactions between complex environmental factors and bacteria interactions, improving our understanding of bioaerosols under air pollution conditions.
اظهر المزيد [+] اقل [-]Risk of penicillin fermentation dreg: Increase of antibiotic resistance genes after soil discharge النص الكامل
2020
Wang, Bing | Yan, Jianquan | Li, Guomin | Zhang, Jian | Zhang, Lanhe | Li, Zheng | Chen, Houhe
Penicillin fermentation dreg (PFD) is a solid waste discharged by pharmaceutical enterprises in the fermentation production process. Due to the residual antibiotic of PFD, the risk of antibiotic resistance bacteria (ARB) generation should be considered in the disposal process. High-throughput quantitative PCR (HT-qPCR) and 16S rRNA gene sequencing were performed to investigate the effect of PFD on the dynamics of antibiotic resistance genes (ARGs) and bacterial community during a lab-scale soil experiment. After the application of PFD, the bacterial number and diversity showed an obvious decrease in the initial days. The abundances of Streptomyces and Bacillus, which are the most widespread predicted source phyla of ARGs, increased remarkably from 4.42% to 2.59%–22.97% and 21.35%. The increase of ARGs was observed during the PFD application and the ARGs carried by PFD itself contributed to the initiation of soil ARGs. The results of redundancy analysis (RDA) show that the shift in bacterial community induced by variation of penicillin content is the primary driver shaping ARGs compositions.
اظهر المزيد [+] اقل [-]Influence of illegal artisanal small-scale gold mining operations (galamsey) on oil and grease (O/G) concentrations in three hotspot assemblies of Western Region, Ghana النص الكامل
2020
Mantey, J. | Nyarko, K.B. | Owusu-Nimo, F. | Awua, K.A. | Bempah, C.K. | Amankwah, R.K. | Akatu, W.E. | Appiah-Effah, E.
This study determined the contamination levels of oil and grease (O/G) across nine (9) galamsey operations under different environmental media (background soil, surface drainage, slurry/sludge and galamsey wastes) in three galamsey hotspot assemblies (Tarkwa Nsuaem, Amenfi East and Prestea Huni Valley) within the Western region of Ghana. Triplicate samples each of the four environmental media for the nine galamsey types (Washing Board, Washing Plant, Anwona, Dig and Wash, Dredging, Underground Abandoned Shaft, Underground Sample Pit, Chamfi and Mill House) were collected and analysed using n-hexane extractable materials in acidic medium by extraction and gravimetry to determine O/G concentrations. From the comparison of mean ranked concentration of O/G, using Kruskal-Wallis Test, the observed differences in the ranking was significant across all four media. The O/G concentrations for Anwona, Chamfi, Mill House, Washing Board and Washing Plant galamsey recorded exceedances when compared to the Ghana EPA Effluent Guideline Value of 100 mg/L for water and The New Dutch Lists’ Target and Intervention Value of 50 mg/kg and 500 mg/kg for solid/semi-solid materials. Consistently and for all environmental media types, the levels of O/G across the galamsey types were in the descending order of: Washing Board, Chamfi, Anwona, Mill House, Washing Plant, Underground Sample Pit, River Dredging, Dig and Wash, Underground Abandoned Shaft and Control Sample (non-galamseyed areas). In general, the surface drainage medium was predominantly found to be the most impacted upon medium from hydrocarbons by seven of the nine galamsey operations (Washing Board, Anwona, Chamfi, Mill House, Dredging, Dig and Wash and Underground Sample Pit). This was followed by slurry/sludge, background soil and waste media in that order. Expectedly, there were no exceedances for the Reference or Control Samples (non-galamseyed areas).
اظهر المزيد [+] اقل [-]Proximity to roads, but not exposure to metal pollution, is associated with accelerated developmental telomere shortening in nestling great tits النص الكامل
2020
Grunst, A.S. | Grunst, M.L. | Bervoets, L. | Pinxten, R. | Eens, M.
Comprehensively understanding the factors affecting physiology and fitness in urban wildlife requires concurrently considering multiple stressors. To this end, we simultaneously assessed how metal pollution and proximity to roads affect body condition and telomere shortening between days 8 and 15 of age in nestling great tits (Parus major), a common urban bird. We employed a repeated-measures sampling design to compare telomere shortening and body condition between nestlings from four urban study sites south of Antwerp, Belgium, which are located at different distances from a metal pollution point source. In addition, we explored associations between metal exposure and telomere dynamics on the individual level by measuring blood concentrations of five metals/metalloids, of which lead, copper and zinc were present at concentrations above the limit of detection. To assess whether roadway-associated stressors (e.g. noise and air pollution) might affect nestling condition and telomere shortening, we measured the proximity of nest boxes to roads. Metal exposure was not associated with nestling telomere length or body condition, despite elevated blood lead concentrations close to the metal pollution source (mean ± SE = 0.270 ± 0.095 μg/g wet weight at the most polluted study site), suggesting that nestlings may have some capacity to detoxify metals. However, nestlings from nest boxes near roads exhibited more telomere shortening between days 8 and 15 of age, and shorter telomeres at day 15. Nestlings in poorer condition also had shorter telomeres, but proximity to the road was unrelated to body condition. Thus, nutritional stress is unlikely to mediate the relationship between proximity to roads and telomere length. Rather, proximity to roads could have affected telomere shortening by exposing nestlings to air or noise pollution. Our study highlights that traffic-related pollution, which is implicated in human health problems, might also affect urban wildlife.
اظهر المزيد [+] اقل [-]Spatial lag effect of aridity and nitrogen deposition on Scots pine (Pinus sylvestris L.) damage النص الكامل
2020
Samec, Pavel | Zapletal, Miloš | Lukes, Petr | Rotter, Pavel
Scots pine (Pinus sylvestris L.) is a widespread tolerant forest tree-species; however, its adaptability to environmental change differs among sites with various buffering capacity. In this study, we compared the spatial effects of aridity index (AI) and nitrogen deposition (ND) on biomass density in natural and man-made pine stands of differing soil fertility using geographically weighted multiple lag regression. Soil fertility was defined using soil series as zonal trophic (27.9%), acidic (48.2%), gleyed (15.2%) and as azonal exposed (2.5%), maple (2.4%), ash (0.8%), wet (2.1%) and peat (0.9%) under pine stands in the Czech Republic (Central Europe; 4290.5 km²; 130–1298 m a.s.l.). Annual AI and ND in every pine stand were estimated by intersection between raster and vector from 1 × 1 km grid for years 2000, 2003, 2007 and 2010 of severe non-specific forest damage spread. Biomass density was obtained from a MODIS 250 × 250 m raster using the enhanced vegetation index (EVI) for years 2000–2015, with a decrease in EVI indicating non-specific damage. Environmental change was assessed by comparing predictor values at EVI time t and t+λ. Non-specific damage was registered over 51.9% of total forest area. Less than 8.8% of damaged stands were natural and the rest (91.2%) of damaged stands were man-made. Pure pine stands were more damaged than mixed. The ND effect prevailed up to 2007, while AI dominated later. Temporal increasing ND effect under AI effectiveness led to the most significant pine stand damage in 2008 and 2014. Predictors from 2000 to 2007 afflicted 58.5% of non-specifically damaged stands at R² 0.09–0.76 (median 0.38), but from 2000 to 2010 afflicted 57.1% of the stands at R² 0.16–0.75 (median 0.40). The most damaged stands occurred on acidic sites. Mixed forest and sustainable management on natural sites seem as effective remediation reducing damage by ND.
اظهر المزيد [+] اقل [-]Exposure to both formaldehyde and high relative humidity exacerbates allergic asthma by activating the TRPV4-p38 MAPK pathway in Balb/c mice النص الكامل
2020
Duan, Jiufei | Xie, Jing | Deng, Ting | Xie, Xiaoman | Liu, Hong | Li, Baizhan | Chen, Mingqing
Some studies have indicated that formaldehyde, a ubiquitous environmental pollutant, can induce or aggravate allergic asthma. Epidemiological studies have also shown that the relative humidity indoors may be an independent and a key factor associated with the aggravation of allergic asthma. However, the synergy of humidity and formaldehyde on allergic asthma and the mechanism underlying this effect remain largely unknown. In this study, we aim to determine the effect of high relative humidity and/or formaldehyde exposure on allergic asthma and explore the underlying mechanisms. Male Balb/c mice were modeled with ovalbumin (OVA) and exposure to 0.5 mg/m3 formaldehyde and/or different relative humidity (60%/75%/90%). Histopathological changes, pulmonary function, Th1/Th2 balance, the status of mucus hypersecretion and the levels of inflammatory factors were detected to assess the exacerbation of allergic asthma. The levels of the transient receptor potential vanilloid 4 (TRPV4), calcium ion and the activation of p38 mitogen-activated protein kinases (p38 MAPK) were detected to explore the underlying mechanisms. The results showed that exposure to high relative humidity or to 0.5 mg/m3 formaldehyde alone had a slight, but not significant, affect on allergic asthma. However, the pathological response and airway hyperresponsiveness (AHR) were greatly aggravated by simultaneous exposure to 0.5 mg/m3 formaldehyde and 90% relative humidity. Blocking TRPV4or p38 MAPK using HC-067047 and SB203580 respectively, effectively alleviated the exacerbation of allergic asthma induced by this simultaneous exposure to formaldehyde and high relative humidity. The results show that when formaldehyde and high relative humidity are present this can enhance the activation of the TRPV4 ion channel in the lung leading to the aggravation of the p38 MAPK activation, resulting in the exacerbation of inflammation and hypersecretion of mucus in the airways.
اظهر المزيد [+] اقل [-]Influence of exposure time on phosphorus composition and bioavailability in wetland sediments from Poyang lake, since the operation of the Three Gorges Dam النص الكامل
2020
Ni, Zhaokui | Wang, Shengrui | Wu, Yue | Liu, Xiaofei | Lin, Ripeng | Liu, Zhezhe
The role of exposure time on wetland sediment-bound phosphorus (P) biogeochemical behavior is studied in Lake Poyang after the operation of the Three Gorges Dam (TGD). The multiple P compounds primarily include orth–P (88.3%), mono–P (8.9%), DNA–P (2.1%), and pyro–P (0.8%) in the exposed sediments. A significant decreasing trend of orth–P occurred after the operation of the Three Gorges Dam (TGD), with the mean concentration decreasing from 175.9 to 142.5 mg kg⁻¹ from 2007 to 2012 (ANOVA: P < 0.05), whereas the temporal change in biogenic P showed great variability. The plant distribution pattern and the increase in plant biomass due to decreased water levels might be the reason that caused variations in the P species. Furthermore, the content of orth–P, mono–P, DNA–P, and pyro–P showed increasing trends as sediment exposure time increased. However, the enzyme hydrolysis rate of DNA–P decreased with exposure time and may cause the bioavailability of biogenic P to decrease. Despite the fact that the bioavailability of biogenic P might decline in the short term, the favorable environmental conditions for P release in sediment rewetting processes, together with the increase in orth–P and biogenic P due to extended exposure time, indicate that these large additions of P would enter the overlying water and cause water quality decline once the sediment is submerged underwater during the next wet season. An environmental process analysis showed that the increased exposure time induced sediment environmental conditions changes that played an important role in the biogeochemical cycle of P and may be an important way of P replenishment in Lake Poyang. The results of this study help provide a better understanding of the role of sediment drying/wetting cycles in nutrient biogeochemical behavior and fates in wetland ecosystems.
اظهر المزيد [+] اقل [-]