خيارات البحث
النتائج 661 - 670 من 5,153
Long term trends in atmospheric concentrations of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons: A study of Japanese cities from 1997 to 2014 النص الكامل
2018
Hayakawa, Kazuichi | Tang, Ning | Nagato, Edward Gou | Toriba, Akira | Sakai, Shigekatsu | Kano, Fumio | Goto, Sumio | Endo, Osamu | Arashidani, Kei-ichi | Kakimoto, Hitoshi
Total suspended particulate matter (TSP) was collected during the summer and winter in five Japanese cities spanning Hokkaido to Kyushu (Sapporo, Kanazawa, Tokyo, Sagamihara and Kitakyushu) from 1997 to 2014. Nine polycyclic aromatic hydrocarbons (PAHs) with four to six rings, including pyrene (Pyr) and benzo[a]pyrene (BaP), were identified using high-performance liquid chromatography (HPLC) with fluorescence detection. Two nitropolycyclic aromatic hydrocarbons (NPAHs), 1-nitropyrene (1-NP) and 6-nitrobenzo[a]pyrene (6-NBaP), were identified by HPLC with chemiluminescence detection. A comparison of PAH and NPAH concentrations and [NPAH]/[PAH] ratios such as [1-NP]/[Pyr] and [6-NBaP]/[BaP] revealed the following characteristics in the five cities: (1) In Sapporo, Kanazawa, Tokyo and Sagamihara, the concentrations of PAHs and NPAHs were high at the beginning of the sampling period and then steadily decreased, with NPAHs decreasing faster than PAHs. The large initial [1-NP]/[Pyr] ratios suggest that the major contributor was automobiles but subsequent decreases in this ratio suggest decreased automobile contributions. (2) By contrast, PAH concentrations in Kitakyushu did not decrease during the sampling period, though concentrations of NPAHs decreased. The consistently smaller [1-NP]/[Pyr] ratio and larger [6-NBaP]/[BaP] ratio in Kitakyushu suggests that the major contributor of PAHs was not automobiles but iron manufacturing which uses a large amount of coal. The sudden increase in atmospheric PAH concentrations in the winter of 2014 may also be due to iron manufacturing.
اظهر المزيد [+] اقل [-]Spatial and vertical variations of perfluoroalkyl acids (PFAAs) in the Bohai and Yellow Seas: Bridging the gap between riverine sources and marine sinks النص الكامل
2018
Zhou, Yunqiao | Wang, Tieyu | Li, Qifeng | Wang, Pei | Li, Lei | Chen, Shuqin | Zhang, Yueqing | Kifāyatullāh, K̲h̲ān | Meng, Jing
Perfluoroalkyl acids (PFAAs) are being increasingly reported as emerging contaminants in riverine and marine settings. This study investigated the contamination level and spatial distribution of 17 PFAAs within the depth profile of the Bohai and Yellow Seas using newly detected sampling data from 49 sites (June 29 to July 14, 2016). Moreover, the riverine flux of 11 selected PFAAs in 33 rivers draining into the Bohai and Yellow Seas was estimated from previous studies (2002–2014) in order to establish the relationship between riverine sources and marine sinks. The results showed that the Bohai and Yellow Seas were commonly contaminated with PFAAs: total concentrations of PFAAs in the surface, middle, and bottom zones ranged from 4.55 to 556 ng L−1, 4.61–575 ng L−1, and 4.94–572 ng L−1, respectively. The predominant compounds were PFOA (0.55–449 ng L−1), PFBA (<LOQ-34.5 ng L−1), and PFPeA (<LOQ-54.3 ng L−1), accounting for 10.1–87.0%, 5.2–59.5%, and 0.6–68.6% of the total PFAAs, respectively. In general, the ∑PFAA concentrations showed a slightly decreasing trend with sampling depth. Contamination was particularly severe in Laizhou Bay, fed by the Xiaoqing River and an industrial park known for PFAA production. The total riverine PFAA mass flux into the Bohai and Yellow Seas was estimated to be 72.2 t y−1, of which 94.8% was carried by the Yangtze and Xiaoqing Rivers. As the concentration of short-chain PFAAs begins to rise in seawater, further studies on the occurrence and fate of short-chain PFAAs with special focus on effective control measures would be very timely, particularly in the Xiaoqing River and Laizhou Bay.
اظهر المزيد [+] اقل [-]Quantifying the influence of natural and socioeconomic factors and their interactive impact on PM2.5 pollution in China النص الكامل
2018
Yang, Dongyang | Wang, Xiaomin | Xu, Jianhua | Xu, Chengdong | Lu, Debin | Ye, Chao | Wang, Zujing | Bai, Ling
PM2.5 pollution is an environmental issue caused by multiple natural and socioeconomic factors, presenting with significant spatial disparities across mainland China. However, the determinant power of natural and socioeconomic factors and their interactive impact on PM2.5 pollution is still unclear. In the study, the GeogDetector method was used to quantify nonlinear associations between PM2.5 and potential factors. This study found that natural factors, including ecological environments and climate, were more influential than socioeconomic factors, and climate was the predominant factor (q = 0.56) in influencing PM2.5 pollution. Among all interactions of the six influencing factors, the interaction of industry and climate had the largest influence (q = 0.66). Two recognized major contaminated areas were the Tarim Basin in the northwest region and the eastern plain region; the former was mainly influenced by the warm temperate arid climate and desert, and the latter was mainly influenced by the warm temperate semi-humid climate and multiple socioeconomic factors. The findings provided an interpretation of the influencing mechanisms of PM2.5 pollution, which can contribute to more specific policies aimed at successful PM2.5 pollution control and abatement.
اظهر المزيد [+] اقل [-]Residuals of organophosphate esters in foodstuffs and implication for human exposure النص الكامل
2018
Ding, Jinjian | Deng, Tongqing | Xu, Mengmeng | Wang, Shen | Yang, Fangxing
Foodstuffs may be contaminated by organophosphate esters (OPEs) and become an important source of human exposure since OPEs are ubiquitous in the environment. In the present study, 10 OPEs were analyzed in various food matrices collected from a city in Eastern China including chicken, pork, fishes, vegetables, tofu, eggs, milk and cereals. The concentrations of Σ₁₀OPEs ranged from 1.1 to 9.6 ng g⁻¹ fresh weight (fw) in the foodstuffs. Cereals had the highest residual level of total OPEs with a mean value of 5.7 ng g⁻¹ fw. Tris(2-ethylhexyl) phosphate was detected in all foodstuff samples and showed the highest median residual concentration of 1.3 ng g⁻¹ fw among the OPE analogs. The daily dietary intake of OPEs was calculated as 3.6 and 2.4 μg d⁻¹ for adults and children. Cereals were identified as the major contributor to the total OPEs among different types of foodstuffs. Preliminary exposure assessment revealed that the current non-cancer health risks of OPEs via dietary intake were in the range of 10⁻⁵-10⁻³, indicating low risk levels. Moreover, the hazard index of OPEs indicated that the risk for children (3 × 10⁻³) was higher than adults (2 × 10⁻³).
اظهر المزيد [+] اقل [-]Emission of volatile organic compounds from plants shows a biphasic pattern within an hormetic context النص الكامل
2018
Agathokleous, Evgenios | Kitao, Mitsutoshi | Calabrese, Edward J.
Biogenic volatile organic compounds (BVOCs) are released to the atmosphere from vegetation. BVOCs aid in maintaining ecosystem sustainability via a series of functions, however, VOCs can alter tropospheric photochemistry and negatively affect biological organisms at high concentrations. Due to their critical role in ecosystem and environmental sustainability, BVOCs receive particular attention by global change biologists. To understand how plant VOC emissions affect stress responses within a dose-response context, dose responses should be evaluated. This commentary collectively documents hormetic-like responses of plant-emitted VOCs to external stimuli. Hormesis is a generalizable biphasic dose response phenomenon where the response to low doses acts in an opposite way at high doses. These collective findings suggest that ecological implications of low-level stress that may alter BVOC emissions should be considered in future studies. This commentary promotes new insights into the interface between biological systems and environmental change that influence several parts of the globe, and provide a base for advancing hazard assessment testing strategies and protocols to provide decision makers with adequate data for generating environmental standards.
اظهر المزيد [+] اقل [-]Fatty acid composition, enzyme activities and metallothioneins in Donax trunculus (Mollusca, Bivalvia) from polluted and reference sites in the Gulf of Annaba (Algeria): Pattern of recovery during transplantation النص الكامل
2018
Rabei, Amina | Hichami, Aziz | Beldi, Hayet | Bellenger, Sandrine | Khan, Naim Akhtar | Soltani, Noureddine
The gulf of Annaba, the most important touristic and economic coastal zone located in Northeast Algeria, is contaminated by several pollutants from urban, agricultural, harbor and industrial activities. Elevated levels of heavy metals were detected in a locally prevalent edible mollusk Donax trunculus (Bivalvia, Donacidae) widely used as a sentinel species for the assessment of marine pollution. The present work aims to measure the difference between two localities, one being full of different pollutants (Sidi Salem) and the other being relatively clean (El Battah) and to evaluate the ability of D. trunculus to overcome the environmental stress during a transplantation experiment by a determination of fatty acid profile, the enzymes activities and the level of metallothioneins (MTs), a biomarker of metallic contamination. Adults of D. trunculus were collected at Sidi Salem (contaminated site) and transplanted into El Battah (reference site) for 21 days in cages (60 × 60 × 60 cm with a 2 mm mesh). Biochemical analyzes were conducted at different times (0, 7, 14 and 21 days). At 0-day experiment: the rate of the fatty acids, the enzymes activities and MT levels at the site of Sidi Salem (polluted site) were significantly different from those of El Battah. During the transplantation a gradual restoration of fatty acids rates, enzymes activities and MT levels was observed. At the end of the period of transplantation, the values are comparable to those of El Battah. A two-way ANOVA (time, site) on data revealed significant effects of time and site. Overally, D. trunculus is able to induce its detoxification system and to restore relatively rapidly the status of individuals from the reference site (El Battah).
اظهر المزيد [+] اقل [-]Emission of sulfur dioxide from polyurethane foam and respiratory health effects النص الكامل
2018
Xu, Wangjie | Li, Juexiu | Zhang, Weihua | Wang, Zhaoxia | Wu, Jiajie | Ge, Xiaojing | Wu, Jieli | Cao, Yong | Xie, Yilin | Ying, Diwen | Wang, Yalin | Wang, Lianyun | Qiao, Zhongdong | Jia, Jinping
Recently, health damage to children exposed to synthetic polyurethane (PU) running tracks has aroused social panic in China. Some possible toxic volatiles may be responsible for these damages. However, the exact cause remains unclear. We have detected a low concentration of sulfur dioxide (SO₂; 1.80–3.30 mg/m³) on the surface of the PU running track. Surprisingly, we found that SO₂ was generated from the PU running track, and even such a low concentration of SO₂ could induce severe lung inflammation with hemorrhage, inflammatory cell infiltration, and inflammatory factor secretion in mice after 2-week exposure. Prolonged exposure (5 weeks) to the SO₂ caused chronic pulmonary inflammation and pulmonary fibrosis in the mice. Peripheral hemogram results showed that platelet concentration increased significantly in the SO₂ group compared to that in the control group, and the proportion of blood neutrophils and monocytes among total leukocytes was more imbalanced in the SO₂ group (16.6%) than in the control group (8.0%). Further histopathology results of sternal marrow demonstrated that hematopoietic hyperplasia was severely suppressed with increased reticular stroma and adipocytes under SO₂ exposure. These data indicate that a low concentration of SO₂ generated spontaneously from PU running track outdoors as a secondary product is still harmful to health, as it impairs the respiratory system, hematopoiesis, and immunologic function. This indicates that the low-concentration SO₂ could be a major cause of diseases induced by air pollution, such as chronic obstructive pulmonary disease.
اظهر المزيد [+] اقل [-]Alterations in urinary metabolomic profiles due to lead exposure from a lead–acid battery recycling site النص الكامل
2018
Eguchi, Akifumi | Nomiyama, Kei | Sakurai, Kenichi | Kim Trang, Pham Thi | Viet, Pham Hung | Takahashi, Shin | Iwata, Hisato | Tanabe, Shinsuke | Todaka, Emiko | Mori, Chisato
Lead poisoning is considered a public health threat, particularly in developing countries. Health problems from Pb exposure occur in many parts of the world, especially near Pb mines, Pb smelters, and used lead–acid battery (ULAB) recycling plants. In this study, we analyzed the urine metabolome of residents in a village located near a ULAB recycling facility to investigate the biological effects of Pb exposure (ULAB: n = 44, Reference: n = 51). Lasso linear regression models were moderately predictive of blood Pb levels, as evaluated by a training set (R² = 0.813) and against an external test set (R²EXT = 0.647). In lasso logistic regression models, areas under receiver operating characteristic curves, as measured by 5-fold cross-validation (AUCCV = 0.871) and against an external test set (AUCEXT = 0.917), indicated accurate classification of urine samples from the affected village and from a reference site. Ten candidate biomarkers identified at false discovery rates of <0.05 were associated with ATP-binding cassette (ABC) transporters, possibly related to the disruption of small-molecule transport in the kidney; amino acid, porphyrin, and chlorophyll metabolism; and the heme biosynthetic pathway. Collectively, the results suggest that lead Pb is related to the health effects in individuals residing in ULAB site by alteration of these biological pathways.
اظهر المزيد [+] اقل [-]Toxic effects of boscalid on the growth, photosynthesis, antioxidant system and metabolism of Chlorella vulgaris النص الكامل
2018
Qian, Le | Qi, Suzhen | Cao, Fangjie | Zhang, Jie | Zhao, Feng | Li, Changping | Wang, Chengju
Boscalid is one of the most frequently detected pesticides in main coastal estuaries in California, with concentrations as high as 36 μg/L. However, ecotoxicology information about boscalid to aquatic organisms is scarce. To investigate toxic effects and mechanisms of boscalid on freshwater algae Chlorella vulgaris (C. vulgaris), C. vulgaris were exposed to a range of boscalid concentrations (0, 0.8, 1.6, 2.4 and 3.2 mg/L) for 96 h to study the changes in photosynthetic pigment contents, responses of the antioxidant enzyme system and alterations in endogenous substances. Results indicated that the growth of algae and the content of chlorophyll and carotenoids were significantly inhibited by 1.6 mg/L boscalid. Reactive oxygen species (ROS) and oxidative damage of C. vulgaris could be induced by boscalid, in accordance with significant changes in ROS levels and a series of antioxidant enzyme activities. Moreover, the alterations in endogenous substances showed that boscalid could affect photosynthesis and energy metabolism of C. vulgaris. These results demonstrated that boscalid could induce impacts on C. vulgaris mainly through disturbing the photosynthesis, oxidative damage and energy metabolism. The present study provided a better understanding of the negative effects and mechanisms of bosaclid in microalgae.
اظهر المزيد [+] اقل [-]Oxidative potential of fine ambient particles in various environments النص الكامل
2018
Borlaza, Lucille Joanna S. | Cosep, Enrique Mikhael R. | Kim, Seojong | Lee, Kwangyul | Joo, Hungsoo | Park, Minhan | Bate, Daphne | Cayetano, Mylene G. | Park, Kihong
The oxidative potential (OP) and chemical characteristics of fine particles collected from urban, roadside, rural, and industrial sites in Korea during spring, summer, fall, and winter seasons and an urban site in the Philippines during dry and wet seasons were examined. Significant differences in the OP of fine particles among sites and seasons were found. The industrial site yielded the highest OP activity (both mass and volume-normalized OP) among the sites, suggesting the strongest reactive oxygen species (ROS)-generating capability of industry source-dominant PM₂.₅. Seasonal data show that OP activities increased during the spring and summer possibly due to increased heavy metals caused by dust events and secondary organic aerosols formed by strong photochemical activity, respectively. The strength of the OP association with the chemical components highlights the influence of organic carbon and transition metals on the OP of ambient fine particles. The two OP assays (dithiothreitol (DTT) and electron spin resonance (ESR)) having different ROS-generating mechanisms were found to have different sensitivities to the chemical components facilitating a complementary analysis of the OP of ambient fine particles. Multiple linear regression model equations (OP as a function of chemical components) which were dependent on the sites were derived. A comparison of the daily OP and hazard index (HI) (the ratio of the measured mass concentration to the reference mass concentration of fine particles) suggests that the HI may not be sufficient to accurately estimate the health effects of fine particles, and a direct or indirect measurement of toxicity such as OP should be required in addition to the concentration level.
اظهر المزيد [+] اقل [-]