خيارات البحث
النتائج 661 - 670 من 6,560
A three-phase-successive partition-limited model to predict plant accumulation of organic contaminants from soils treated with surfactants النص الكامل
2020
The application of surfactants is an effective way to inhibit the migration of organic contaminants (OCs) from soil to plants, and thus would be a great candidate method for producing safe agricultural products in organic-contaminated farmland. In this study, it was found that cetyltrimethyl ammonium bromide (CTMAB) reduced the OCs in cabbage by 22.0–64.1%, and those in lettuce by 18.8–36.5%. We developed a mathematical model to predict the accumulation of OCs in plants in the presence of surfactants. The successive partitioning of OCs among three phases, namely, soil, soil water and plant roots, was considered. The equilibrium of OC between the soil and soil water was scaled using the sorption coefficient of OCs on soils normalized by the soil organic carbon (Kₒc) and carbon-normalized OCs sorption coefficient with the sorbed surfactants (Kₛₛ). To precisely calculate the Kₒc and Kₛₛ, the bioavailable and bound OCs were measured using a sequential extraction method. Linear positive correlations between the logarithm of Kₒc (or Kₛₛ) and the logarithm of the octanol-water partition coefficient (log Kₒw) of OCs were established for laterite soils, paddy soils and black soils. In the presence of CTMAB, the equilibrium of OCs between the soil water and plant roots was scaled using the carbon-normalized OC sorption coefficient with the sorbed surfactants (Kₛf), whose logarithmic value was linearly correlated with the log Kₒw of the OCs. A three-phase-successive partition-limited model was developed based on these relationships, demonstrating an average prediction accuracy of 76.6 ± 36.8%. Our results indicated that the decrease in bioavailable OCs in soils and the increase in sorption of OCs on roots should be taken into consideration when predicting plant uptake. This research provides a validated mathematical model for predicting the concentration of OCs in plants in the presence of surfactants.
اظهر المزيد [+] اقل [-]Whole-transcriptome analysis of the toxic effects of zearalenone exposure on ceRNA networks in porcine granulosa cells النص الكامل
2020
Zearalenone (ZEA), an estrogen-like mycotoxin, is commonly detected in animal feeds including improperly stored grains. It has been well demonstrated that ovarian granulosa cells (GCs) perform vital roles during follicular development, however, the competing endogenous RNA (ceRNA) network in GCs after ZEA exposure remains to be well described. Here, for the first time, we adopted whole-transcriptome sequence technology to explore the molecular mechanism of ZEA toxicology on porcine GCs. The results provide evidence that the cell cycle of porcine GCs is arrested in the G2/M phase after exposure to ZEA. Furthermore, bioinformation analysis found that cell cycle arrest related genes were perturbed, including CDK1, CCNB1, CDC25A, and CDC25C, which was consistent with the results of RT-qPCR, immunofluorescence, and Western Blotting. Based on the whole-transcriptome sequence data, by constructing ceRNA networks related to cell cycle arrest, we observed that ZEA exposure arrested cell cycle progression at the G2/M phase in porcine GCs, and non-coding RNAs (ncRNAs) played an important role in this process via regulating the expressions of cell cycle arrest related genes. Taken together, our data here provides strong data to support that the toxicological mechanism regarding the widely distributed toxicant ZEA acts through ceRNA networks in porcine granulosa cells.
اظهر المزيد [+] اقل [-]Foraminifera as bioindicators of water quality: The FoRAM Index revisited النص الكامل
2020
Prazeres, Martina | Martínez-Colón, Michael | Muller, Pamela Hallock
Coral reefs worldwide are degrading at alarming rates due to local and global stressors. There are ongoing needs for bioindicator systems that can be used to assess reef health status, the potential for recovery following destructive events such as tropical storms, and for the success of coral transplants. Benthic foraminiferal shells are ubiquitous components of carbonate sediment in reef environments that can be sampled at minimal cost and environmental impact. Here we review the development and application of the FoRAM Index (FI), which provides a bioindicator metric for water quality that supports reef accretion. We outline the strengths and limitations of the FI, and propose how it can be applied more effectively across different geographical regions.
اظهر المزيد [+] اقل [-]A hybrid air pollutant concentration prediction model combining secondary decomposition and sequence reconstruction النص الكامل
2020
Sun, Wei | Huang, Chenchen
Acid rain is a serious threat to terrestrial ecosystems. To provide more accurate early warning information for acid rain prevention, urban planning, and travel planning, a novel air pollutant prediction model was proposed in this paper to predict NO₂ and SO₂. First, the data were decomposed into several sub-sequences by a complete ensemble empirical mode decomposition with adaptive noise. Second, the subsequences are reconstructed by variational mode decomposition and sample entropy. Then, the new subsequences are predicted by the extreme learning machine combined with the whale optimization algorithm. The empirical analysis was carried out through 8 data sets. According to the experimental results, three main conclusions can be drawn. First, the proposed model in this paper has excellent prediction performance and robustness. In all the comparison experiments, the R² and RMSE of the proposed model are the best among all the models. Second, data preprocessing is very necessary. After adding the decomposition algorithm, the average improvement levels of R² and RMSE were 897.57% and 50.78%, respectively. Third, the re-decomposition of IMF1 is an effective method to improve prediction accuracy. After the re-decomposition of IMF1, R² can be improved by 13.64% on average on the original basis, and RMSE can be reduced by 31.99% on average. The results of this study can provide a valuable reference for the research of air pollutant prediction. In future work, the application of the proposed model in other air pollutants or other regions can be explored.
اظهر المزيد [+] اقل [-]Occurrence and trophic transfer of per- and polyfluoroalkyl substances in an Antarctic ecosystem النص الكامل
2020
Gao, Ke | Miao, Xing | Fu, Jie | Chen, Yu | Li, Huijuan | Pan, Wenxiao | Fu, Jianjie | Zhang, Qinghua | Zhang, Aiqian | Jiang, Guibin
Information on the occurrence and trophodynamics of per- and polyfluoroalkyl substances (PFASs) in the Antarctic region is limited. We investigated the occurrence of PFASs in an ecosystem in the Fildes Peninsula at King George Island and Ardley Island, Antarctica. The profiles, spatial distribution, and trophic transfer behavior of PFASs were further studied. ∑PFASs ranged from 0.50 ± 38.0 ng/g dw (dry weight) in algae to 4.97 ± 1.17 ng/g dw in Neogastropoda (Ngas), which was lower than those in the low- and mid-latitude regions and even Arctic regions. Perfluorobutyric acid (PFBA) was predominant with detection frequencies above 50% in all types of samples, and the relative contribution of PFBA ranged from 22% to 57% in the biota samples. The biomagnification factors of PFBA, perfluoroheptanoate (PFHpA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) between Archaeogastropoda (Agas) and Ngas were 0.67 ± 0.54, 0.77 ± 0.38, 1.04 ± 1.56, 3.30 ± 4.07, and 1.61 ± 0.89, respectively. The trophic magnification factors of PFHxS and PFOS were 2.09 and 2.92, respectively, which indicated that they could be biomagnified through the food chain. Considering the increasing production and uncertain toxicological risks of emerging PFASs and the sensitive ecosystems in Antarctic regions, more attention should be paid, especially for the short-chain ones in the Antarctic region.
اظهر المزيد [+] اقل [-]Airborne toluene exposure causes germline apoptosis and neuronal damage that promotes neurobehavioural changes in Caenorhabditis elegans النص الكامل
2020
Soares, Marcell Valandro | Charão, Mariele Feiffer | Jacques, Mauricio Tavares | dos Santos, Ana Laura Anibaletto | Luchese, Cristiane | Pinton, Simone | Ávila, Daiana Silva
Toluene is a highly volatile organic solvent present in gasoline. Exposure mainly occurs by absorption via the pulmonary tract and easily reaches the central nervous system, which causes toxic effects. Toluene toxicity has been described but not well established. The present work aimed to evaluate the effects of airborne exposure to toluene, the in vivo model Caenorhabditis elegans was assessed to determine whether nematode could be used to evaluate the effects of exposure to toluene and the possible mechanisms of toxicity of the solvent. Worms at the first or fourth larval stages were exposed to toluene for 48 or 24 h, respectively, in a laboratory-developed vapor chamber at concentrations of 450, 850, 1250 and 1800 ppm. We observed increases in worm mortality and significant developmental delays that occurred in a concentration-dependent manner. An increased incidence of apoptotic events in treated germline cells was shown, which was consistent with observed reductions in reproductive capacity. In addition, toluene promoted significant behavioural changes affecting swimming movements and radial locomotion, which were associated with changes in the fluorescence intensity and morphology of GABAergic and cholinergic neurons. We conclude that toluene exposure was toxic to C. elegans, with effects produced by the induction of apoptosis and neuronal damage.
اظهر المزيد [+] اقل [-]Cadmium and kidney function: Concentrations, variabilities, and associations across various stages of glomerular function النص الكامل
2020
Jain, Ram B.
Data (N = 10336) from National Health and Nutrition Examination Survey for 2003–2016 for US adults aged ≥ 20 years were analyzed to evaluate the concentrations of blood and urine cadmium across the various stages of glomerular function. Estimated glomerular filtration rate (eGFR) > 90 mL/min/1.73 m2 was defined to be glomerular function stage 1 (GF-1), eGFR between 60 and 90 mL/min/1.73 m2 defined as GF-2, eGFR between 45 and 60 mL/min/1.73 m2 as GF-3A, and eGFR between 15 and 45 mL/min/1.73 m2 as GF-3B/4. Regression models stratified by GF-stages were fitted to estimate associations between the observed levels of blood and urine cadmium across stages of GF. Based on the results of stratified modes, there were consistent increases in adjusted geometric means (AGMSM) for both blood and urine cadmium from GF-1 to GF-3A although increases were not uniform from one GF stage to another. For the total population, AGMSM for blood and urine cadmium were GF-1 (0.47, 0.24), GF-2 (0.60, 0.37), GF-3A (0.72, 0.45), and GF-3B/4 (0.73, 0.45) μg/L. respectively. Although females had higher AGMSMs than males for both blood and urine cadmium, the difference in blood cadmium narrowed as kidney function deteriorated. Smokers had the steepest increases in AGMSMs for blood and urine cadmium across the stages of glomerular function and smoker-nonsmoker differences for blood cadmium narrowed as kidney function deteriorated but smoker-nonsmoker differences for urine cadmium widened as kidney function deteriorated. The important physiologic messages are that both blood and urine cadmium cease to increase from GF-3A to GF-3B/4, suggesting a new steady state based on renal failure. And, the narrowed difference in blood cadmium in smokers vs. nonsmokers suggests why this happens. Incremental exposures to cadmium are offset by excretion as renal failure progresses.
اظهر المزيد [+] اقل [-]Embryonic exposure to pentabromobenzene inhibited the inflation of posterior swim bladder in zebrafish larvae النص الكامل
2020
Peng, Wei | Liu, Sitian | Guo, Yongyong | Yang, Lihua | Zhou, Bingsheng
The emerging flame retardants pentabromobenzene (PBB) has been frequently detected in recent years and may pose exposure risks to wild animals and human beings. In this study, the inflation of posterior swim bladder of zebrafish larvae was used as an endpoint to study the developmental toxicity and putative mechanisms associated with PBB toxicity. Our results showed that embryonic exposure to PBB could significantly inhibit the inflation of posterior swim bladders. Reduced T3 levels and transcriptional changes of crh and pomc were observed in PBB treated zebrafish larvae at 120 hpf. However, key regulators of thyroid and adrenocortical system involved in the synthesis (tsh), biological conversion (ugt1ab, dio2) and functional regulation (trα, trβ, gr) showed no significant changes. Further data revealed that prlra was the only gene that was altered among the detected genes at 96 h post fertilization (hpf). At 120 hpf, the morphology of swim bladder indicated deflation in treatments at 0.25 μM and higher. In addition, the mRNA levels of anxa5, prlra, prlrb, atp1b2 and slc12a10 were all significantly changed at 120 hpf. Taken together, we suppose that embryonic exposure to PBB inhibited the inflation of swim bladder in zebrafish probably via prlra mediated pathways. The observed changes of thyroid and adrenocortical parameters might be indirect effects evoked by PBB exposure. Overall, our results provide important data and indications for future toxicological study and risk assessment of the emerging flame retardants PBB.
اظهر المزيد [+] اقل [-]N6-methyladenosine mediates arsenite-induced human keratinocyte transformation by suppressing p53 activation النص الكامل
2020
Zhao, Tianhe | Sun, Donglei | Zhao, Manyu | Lai, Yanhao | Liu, Yuan | Zhang, Zunzhen
N⁶-methyladenosine (m⁶A), the most abundant and reversible RNA modification, plays critical a role in tumorigenesis. However, whether m⁶A can regulate p53, a leading antitumor protein remains poorly understood. In this study, we explored the regulatory role of m⁶A on p53 activation using an arsenite-transformed keratinocyte model, the HaCaT-T cell line. We created the cell line by exposing human keratinocyte HaCaT cells to 1 μM arsenite for 5 months. We found that the cells exhibited an increased m⁶A level along with an aberrant expression of the methyltransferases, demethylase, and readers of m⁶A. Moreover, the cells exhibited decreased p53 activity and reduced p53 phosphorylation, acetylation, and transactivation with a high nucleus export rate of p53. Knockdown of the m⁶A methyltransferase, METTL3 significantly decreased m⁶A level, restoring p53 activation and inhibiting cellular transformation phenotypes in the arsenite-transformed cells. Further, using both a bioinformatics analysis and experimental approaches, we demonstrated that m⁶A downregulated the expression of the positive p53 regulator, PRDM2, through the YTHDF2-promoted decay of PRDM2 mRNAs. We showed that m⁶A upregulated the expression of the negative p53 regulator, YY1 and MDM2 through YTHDF1-stimulated translation of YY1 and MDM2 mRNA. Taken together, our study revealed the novel role of m⁶A in mediating arsenite-induced human keratinocyte transformation by suppressing p53 activation. This study further sheds light on the mechanisms of arsenic carcinogenesis via RNA epigenetics.
اظهر المزيد [+] اقل [-]Does soil CuO nanoparticles pollution alter the gut microbiota and resistome of Enchytraeus crypticus? النص الكامل
2020
Ma, Jun | Chen, Qing-Lin | O’Connor, Patrick | Sheng, G Daniel
Growing evidence suggests that metallic oxide nanoparticles can pose a severe risk to the health of invertebrates. Previous attention has been mostly paid to the effects of metallic oxide nanoparticles on the survival, growth and physiology of animals. In comparison, the effects on gut microbiota and incidence of antibiotic resistance genes (ARGs) in soil fauna remain poorly understood. We conducted a microcosm study to explore the responses of the non-target soil invertebrate Enchytraeus crypticus gut microbiota and resistomes to copper oxide nanoparticles (CuO NPs) and copper nitrate by using bacterial 16S rRNA gene amplicons sequencing and high throughput quantitative PCR. The results showed that exposure to Cu2+ resulted in higher bioaccumulation (P < 0.05) and lower body weight and reproduction (P < 0.05) of Enchytraeus crypticus than exposure to CuO NPs. Nevertheless, exposure to CuO NPs for 21 days markedly increased the alpha-diversity of the gut microbiota of Enchytraeus crypticus (P < 0.05) and shifted the gut microbial communities, with a significant decline in the relative abundance of the phylum Planctomycetes (from 37.26% to 19.80%, P < 0.05) and a significant elevation in the relative abundance of the phyla Bacteroidetes, Firmicutes and Acidobacteria (P < 0.05). The number of detected ARGs in the Enchytraeus crypticus gut significantly decreased from 45 in the Control treatment to 16 in the Cu(NO3)2 treatment and 20 in the CuO NPs treatment. The abundance of ARGs in the Enchytraeus crypticus gut were also significantly decreased to 38.48% when exposure to Cu(NO3)2 and 44.90% when exposure to CuO NPs (P < 0.05) compared with the controls. These results extend our understanding of the effects of metallic oxide nanoparticles on the gut microbiota and resistome of soil invertebrates.
اظهر المزيد [+] اقل [-]