خيارات البحث
النتائج 681 - 690 من 5,149
Assessment of Cu sub-lethal toxicity (LC50) in the cold-water gorgonian Dentomuricea meteor under a deep-sea mining activity scenario النص الكامل
2018
Martins, Inês | Godinho, António | Goulart, Joana | Carreiro-Silva, Marina
Previous aquaria-based experiments have shown dissolution and leaching of metals, especially copper (Cu), from the simulated sediment plumes generated during mining activities resulting in a pronounced increase of Cu contamination in the surrounding seawater. Metals are bioavailable to corals with food, through ingestion (particulate phase) and through tissue-facilitated transport (passive diffusion). With corals being particularly vulnerable to metal contamination, resuspension of metal-bearing sediments during mining activities represents an important ecological threat. This study was undertaken to evaluate the impact of acute copper exposure (LC50;96 h) on the survival of the cold-water octocoral Dentomuricea aff. meteor. The experimental design was divided in two stages. In stage one, a Cu range-finding toxicity test was performed using Cu dilutions in filtered seawater with concentrations of 0 (control); 60; 150; 250; 450; 600 μg/L. Coral mortality was investigated visually based on the percent surface area of tissue changing from natural yellow colour to black colour indicative of tissue necrosis and death. In stage two, we used the results obtained in the range-finding experiment, to define sub-lethal Cu exposure treatments and exposed D. meteor to Cu concentration of 0 (control); 50; 100; 150; 200; 250 μg/L for 96 h. The corals physical conditions were inspected daily and seawater conditions recorded. Corals were considered dead when all of their tissue turned black. The LC50 value was calculated with regression analysis following Probits methodology. Our results indicate that Cu LC50;96 h for the octocoral D. meteor is 137 μg/L.
اظهر المزيد [+] اقل [-]Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model النص الكامل
2018
Meghdadi, Aminreza | Javar, Narmin
Spatial and seasonal variations in nitrate contamination are a globally concern. While numerous studies have used δ¹⁵N-NO₃ and δ¹⁸O-NO₃ to elucidate the dominant sources of nitrate in groundwater, this approach has significant limitations due to the overlap of nitrate isotopic ranges and the occurrence of nitrate isotopic fractionation. This study quantitatively assessed the spatial and seasonal variations in the proportional contributions of nitrate sources from different land uses in the Tarom watershed in North-West Iran. To achieve this aim, orthogonal projection of the hydrochemical and isotopic dataset of the principal component analysis (PCA) as well as correlation coefficient matrix (Corr-PCA) were evaluated to reduce the dimensionality of the inter-correlated dataset. Next, a nitrate isotopic biplot accompanied with a Bayesian isotope mixing model (SIAR) were applied to specify the spatial and seasonal trends in the proportional contribution of three dominant sources of nitrate (fertilizers, animal manure and residential waste) in the watershed. Finally, in order to provide a sensitive framework for nitrate source appointment and overcome the associated limitations of dual nitrate isotope application, the integration of boron isotope (δ¹¹B) and strontium isotopic ratio (⁸⁷Sr/⁸⁶Sr) was introduced. The results revealed that the mean contribution of residential sewage increased (17%–27.5%), while the mean contribution of fertilizers decreased (28.3%–19%), from late spring to early autumn. Also, fertilizer was the highest contributor (42.1% ± 3.2) during late spring, especially in regions with more than 75% agricultural land. Meanwhile, the mean contribution of sewage was highest in early autumn (32.1% ± 2.8) in the areas with more than 20% residential land. These results were confirmed by coupled application of δ¹¹B and ⁸⁷Sr/⁸⁶Sr. This study provides a useful insight for environmental managers to verify groundwater pollution contributors and to better apply remedial solutions.
اظهر المزيد [+] اقل [-]Sensitive analysis of steroid estrogens and bisphenol a in small volumes of water using isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry النص الكامل
2018
Chang, Hong | Shen, Xiaoyan | Shao, Bing | Wu, Fengchang
An isotope-dilution ultra-performance liquid chromatography–electrospray tandem mass spectrometry method combined with dansylation was established to sensitively quantify four steroid estrogens (estrone, 17α-estradiol, 17β-estradiol and 17α-ethynylestradiol) and bisphenol A in sewage influent and effluent. A simple hexane extraction was performed from a small volume (10 mL), followed by dansyl chloride derivatization and purification with a silica cartridge. The method effectively reduced the matrix effects in sample extract and permitted the selective and sensitive determination of target compounds from complicated matrices. The detection limits of the method for steroid estrogens were 0.20–0.90 ng L⁻¹ in influent and 0.10–0.20 ng L⁻¹ in effluent samples. For bisphenol A, the limits detection of the method were 20 and 0.80 for influent and effluent samples, respectively. Recoveries of 85%–96% were observed in all matrices. The method was applied to analyze residual estrogens and bisphenol A in sewage influent and effluent samples from Beijing, China. The concentrations of bisphenol A (636–1200 ng L⁻¹) were up to 250 times higher than those of steroid estrogens. Estrone was the dominant estrogen in influent and effluent samples, while similar concentrations of 17α-estradiol and 17β-estradiol were detected in all samples.
اظهر المزيد [+] اقل [-]Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment النص الكامل
2018
Zhan, Yu | Luo, Yuzhou | Deng, Xunfei | Grieneisen, Michael L. | Zhang, Minghua | Di, Baofeng
In China, ozone pollution shows an increasing trend and becomes the primary air pollutant in warm seasons. Leveraging the air quality monitoring network, a random forest model is developed to predict the daily maximum 8-h average ozone concentrations ([O₃]MDA₈) across China in 2015 for human exposure assessment. This model captures the observed spatiotemporal variations of [O₃]MDA₈ by using the data of meteorology, elevation, and recent-year emission inventories (cross-validation R² = 0.69 and RMSE = 26 μg/m³). Compared with chemical transport models that require a plenty of variables and expensive computation, the random forest model shows comparable or higher predictive performance based on only a handful of readily-available variables at much lower computational cost. The nationwide population-weighted [O₃]MDA₈ is predicted to be 84 ± 23 μg/m³ annually, with the highest seasonal mean in the summer (103 ± 8 μg/m³). The summer [O₃]MDA₈ is predicted to be the highest in North China (125 ± 17 μg/m³). Approximately 58% of the population lives in areas with more than 100 nonattainment days ([O₃]MDA₈>100 μg/m³), and 12% of the population are exposed to [O₃]MDA₈>160 μg/m³ (WHO Interim Target 1) for more than 30 days. As the most populous zones in China, the Beijing-Tianjin Metro, Yangtze River Delta, Pearl River Delta, and Sichuan Basin are predicted to be at 154, 141, 124, and 98 nonattainment days, respectively. Effective controls of O₃ pollution are urgently needed for the highly-populated zones, especially the Beijing-Tianjin Metro with seasonal [O₃]MDA₈ of 140 ± 29 μg/m³ in summer. To the best of the authors’ knowledge, this study is the first statistical modeling work of ambient O₃ for China at the national level. This timely and extensively validated [O₃]MDA₈ dataset is valuable for refining epidemiological analyses on O₃ pollution in China.
اظهر المزيد [+] اقل [-]Pulmonary exposure to metal fume particulate matter cause sleep disturbances in shipyard welders النص الكامل
2018
Chuang, Hsiao-Chi | Su, Ting-Yao | Chuang, Kai-Jen | Hsiao, Ta-Chih | Lin, Hong-Ling | Hsu, Yuan-Ting | Pan, Chih-Hong | Lee, Kang-Yun | Ho, Shu-Chuan | Lai, Ching-Huang
Sleep disorders may pose a risk to workers in the workplace. We aimed to investigate the associations between metal fume fine particulate matter (PM2.5) and sleep quality in workers. We assessed the effects of personal exposure to metal fume PM2.5 on lung functions, urinary biomarkers, and sleep quality in shipyard welding workers. In total, 96 welding workers and 54 office workers were recruited in the present study; office workers were exposed to 82.1 ± 94.1 μg/m³ PM2.5 and welding workers were exposed to 2166.5 ± 3149.1 μg/m³. Welding workers had significantly lower levels of FEV25-75 than office workers (p < 0.05). An increase in 1 μg/m³ PM2.5 was associated with a decrease of 0.003 ng/mL in urinary serotonin (95% CI = −0.007–0.000, p < 0.05) in all workers and with a decrease of 0.001 ng/mL in serotonin (95% CI = −0.004–0.002, p < 0.05) in welding workers, but these were not observed in office workers. There was no significant association of PM2.5 with urinary cortisol observed in any workers. Urinary serotonin was associated with urinary Cu, Mn, Co, Ni, Cd, and Pb. Urinary cortisol was associated with Cu, Mn, Co, Ni, Cd, and Pb. Sixteen subjects were randomly selected from each of the office and welding workers for personal monitoring of sleep quality using a wearable device. We observed that welding workers had greater awake times than did office workers (p < 0.05). Our study observed that exposure to heavy metals in metal fume PM2.5 may disrupt sleep quality in welding workers.
اظهر المزيد [+] اقل [-]Airborne particle-bound brominated flame retardants: Levels, size distribution and indoor-outdoor exchange النص الكامل
2018
Zhu, Yue-Shan | Yang, Wan-Dong | Li, Xiu-Wen | Ni, Hong-Gang | Zeng, Hui
The quality of indoor environments has a significant impact on public health. Usually, an indoor environment is treated as a static box, in which physicochemical reactions of indoor air contaminants are negligible. This results in conservative estimates for primary indoor air pollutant concentrations, while also ignoring secondary pollutants. Thus, understanding the relationship between indoor and outdoor particles and particle-bound pollutants is of great significance. For this reason, we collected simultaneous indoor and outdoor measurements of the size distribution of airborne brominated flame retardant (BFR) congeners. The time-dependent concentrations of indoor particles and particle-bound BFRs were then estimated with the mass balance model, accounting for the outdoor concentration, indoor source strength, infiltration, penetration, deposition and indoor resuspension. Based on qualitative observation, the size distributions of ΣPBDE and ΣHBCD were characterized by bimodal peaks. According to our results, particle-bound BDE209 and γ-HBCD underwent degradation. Regardless of the surface adsorption capability of particles and the physicochemical properties of the target compounds, the concentration of BFRs in particles of different size fractions seemed to be governed by the particle distribution. Based on our estimations, for airborne particles and particle-bound BFRs, a window-open ventilated room only takes a quarter of the time to reach an equilibrium between the concentration of pollutants inside and outside compared to a closed room. Unfortunately, indoor pollutants and outdoor pollutants always exist simultaneously, which poses a window-open-or-closed dilemma to achieve proper ventilation.
اظهر المزيد [+] اقل [-]Bioaccumulation and effects of novel chlorinated polyfluorinated ether sulfonate in freshwater alga Scenedesmus obliquus النص الكامل
2018
Liu, Wei | Li, Jingwen | Gao, Lichen | Zhang, Zhou | Zhao, Jing | He, Xin | Zhang, Xin
Chlorinated polyfluorinated ether sulfonate (Cl-PFESA) is a novel alternative compound for perfluorooctane sulfonate (PFOS), with its environmental risk not well known. The bioaccumulation and toxic effects of Cl-PFESA in the freshwater alga is crucial for the understanding of its potential hazards to the aquatic environment. Scenedesmus obliquus was exposed to Cl-PFESA at ng L⁻¹ to mg L⁻¹, with the exposure regime beginning at the environmentally relevant level. The total log BAF of Cl-PFESA in S. obliquus was 4.66, higher than the reported log BAF of PFOS in the freshwater plankton (2.2–3.2). Cl-PFESA adsorbed to the cell surface accounted for 33.5–68.3% of the total concentrations. The IC50 of Cl-PFESA to algal growth was estimated to be 40.3 mg L⁻¹. Significant changes in algal growth rate and chlorophyll a/b contents were observed at 11.6 mg L⁻¹ and 13.4 mg L⁻¹ of Cl-PFESA, respectively. The sample cell membrane permeability, measured by the fluorescein diacetate hydrolyzation, was increased by Cl-PFESA at 5.42 mg L⁻¹. The mitochondrial membrane potential, measured by Rh123 staining, was also increased, indicating the hyperpolarization induced by Cl-PFESA. The increasing ROS and MDA contents, along with the enhanced SOD, CAT activity, and GSH contents, suggested that Cl-PFESA caused oxidative damage in the algal cells. It is less possible that current Cl-PFESA pollution in surface water posed obvious toxic effects on the green algae. However, the bioaccumulation of Cl-PFESA in algae would contribute to its biomagnification in the aquatic food chain and its effects on membrane property could potentially increase the accessibility and toxicity of other coexisting pollutants.
اظهر المزيد [+] اقل [-]Determination of metals and pharmaceutical compounds released in hospital wastewater from Toluca, Mexico, and evaluation of their toxic impact النص الكامل
2018
Pérez-Alvarez, Itzayana | Islas-Flores, Hariz | Gómez-Oliván, Leobardo Manuel | Barceló, Damià | López De Alda, Miren | Pérez Solsona, Sandra | Sánchez-Aceves, Livier | SanJuan-Reyes, Nely | Galar-Martínez, Marcela
Due to the activities inherent to medical care units, the hospital effluent released contains diverse contaminants such as tensoactives, disinfectants, metals, pharmaceutical products and chemical reagents, which are potentially toxic to the environment since they receive no treatment or are not effectively removed by such treatment before entering the drain. They are incorporated into municipal wastewater, eventually entering water bodies where they can have harmful effects on organisms and can result in ecological damage. To determine the toxicological risk induced by this type of eflluents, eight metals and 11 pharmaceuticals were quantified, in effluent from a hospital. Developmental effects, teratogenesis and oxidative stress induction were evaluated in two bioindicator species: Xenopus laevis and Lithobates catesbeianus. FETAX (frog embryo teratogenesis assay–Xenopus) was used to obtain the median lethal concentration (LC50), effective concentration inducing 50% malformation (EC50), teratogenic index (TI), minimum concentration to inhibit growth (MCIG), and the types of malformation induced. Twenty oocytes in midblastula transition were exposed to six concentrations of effluent (0.1, 0.3, 0.5, 0.7, 0.9, 1%) and negative and positive (6-aminonicotinamide) controls. After 96 h of exposure, diverse biomarkers of oxidative damage were evaluated: hydroperoxide content, lipid peroxidation, protein carbonyl content, and the antioxidant enzymes superoxide dismutase and catalase. TI was 3.8 in X. laevis and 4.0 in L. catesbeianus, both exceed the value in the FETAX protocol (1.2), indicating that this effluent is teratogenic to both species. Growth inhibition was induced as well as diverse malformation including microcephaly, cardiac and facial edema, eye malformations, and notochord, tail, fin and gut damage. Significant differences relative to the control group were observed in both species with all biomarkers. This hospital effluent contains contaminants which represents a toxic risk, since these substances are teratogenic to the bioindicators used. The mechanism of damage induction may be associated with oxidative stress.
اظهر المزيد [+] اقل [-]Spatial and vertical variations of perfluoroalkyl acids (PFAAs) in the Bohai and Yellow Seas: Bridging the gap between riverine sources and marine sinks النص الكامل
2018
Zhou, Yunqiao | Wang, Tieyu | Li, Qifeng | Wang, Pei | Li, Lei | Chen, Shuqin | Zhang, Yueqing | Kifāyatullāh, K̲h̲ān | Meng, Jing
Perfluoroalkyl acids (PFAAs) are being increasingly reported as emerging contaminants in riverine and marine settings. This study investigated the contamination level and spatial distribution of 17 PFAAs within the depth profile of the Bohai and Yellow Seas using newly detected sampling data from 49 sites (June 29 to July 14, 2016). Moreover, the riverine flux of 11 selected PFAAs in 33 rivers draining into the Bohai and Yellow Seas was estimated from previous studies (2002–2014) in order to establish the relationship between riverine sources and marine sinks. The results showed that the Bohai and Yellow Seas were commonly contaminated with PFAAs: total concentrations of PFAAs in the surface, middle, and bottom zones ranged from 4.55 to 556 ng L−1, 4.61–575 ng L−1, and 4.94–572 ng L−1, respectively. The predominant compounds were PFOA (0.55–449 ng L−1), PFBA (<LOQ-34.5 ng L−1), and PFPeA (<LOQ-54.3 ng L−1), accounting for 10.1–87.0%, 5.2–59.5%, and 0.6–68.6% of the total PFAAs, respectively. In general, the ∑PFAA concentrations showed a slightly decreasing trend with sampling depth. Contamination was particularly severe in Laizhou Bay, fed by the Xiaoqing River and an industrial park known for PFAA production. The total riverine PFAA mass flux into the Bohai and Yellow Seas was estimated to be 72.2 t y−1, of which 94.8% was carried by the Yangtze and Xiaoqing Rivers. As the concentration of short-chain PFAAs begins to rise in seawater, further studies on the occurrence and fate of short-chain PFAAs with special focus on effective control measures would be very timely, particularly in the Xiaoqing River and Laizhou Bay.
اظهر المزيد [+] اقل [-]Evaluation of vehicular pollution using the TRAD-MCN mutagenic bioassay with Tradescantia pallida (Commelinaceae) النص الكامل
2018
Rocha, Aline do Nascimento | Candido, Liliam Silvia | Pereira, Joelson Gonçalves | Silva, Caio Augusto Mussury | da Silva, Sandra Verza | Mussury, Rosilda Mara
Biomonitoring is one of the tools used to assess the mutagenic potential of the atmosphere. In this study, the mutagenicity of Tradescantia pallida, a species of plant largely present in urban environments, was investigated. The objectives of this study was to estimate the mutagenic potential of vehicular flow through the TRAD-MCN bioassay in cities located at different altitudes in the southwest mesoregion of Mato Grosso do Sul, Brazil, to infer possible abiotic agents that may contribute to the effects of atmospheric pollutants, and finally to map the cities with greater risks to the health of the local population. To achieve these objectives, the Tradescantia-micronucleus test was performed on young buds of T. pallida collected between August 2015 and August 2016 in nine cities of Mato Grosso do Sul. These buds were exposed to traffic flows of various intensities. The data collected consisted of measurements of meteorological parameters and vehicular traffic counts for each city. The variables considered were: mean ambient temperature; micronuclei frequency; vehicular flow; altitude; relative humidity; pluviosity. The application of the Trad-MCN bioassay, with the consideration of environmental variables and altitudes, and the use of the Kernel interpolation technique, allowed us to map the areas with significant pollution risks to the population. The highest frequency of exposure to mutagens occurred in the cities with the highest vehicular traffic intensity. The average ambient temperature failed to show a linear association with the frequency of the micronuclei in the samples analyzed (r = 0.11ns). A positive correlation was observed between micronuclei frequency and vehicular flow, (r = 0.67; p ≤ 0.001%) and between micronuclei frequency and altitude (r = 0.24; p ≤ 0.05). A negative correlation was found between relative humidity and micronuclei frequency (r = −0.19; p ≤ 0.05%). Thus, higher micronuclei frequency tended to be present in locations with low relative humidity and high altitudes and vehicular flow.
اظهر المزيد [+] اقل [-]