خيارات البحث
النتائج 681 - 690 من 7,921
Contamination levels and habitat use influence Hg accumulation and stable isotope ratios in the European seabass Dicentrarchus labrax
2021
Pinzone, Marianna | Cransveld, Alice | Tessier, Emmanuel | Bérail, Sylvain | Schnitzler, Joseph | Dāsa, Kr̥shṇā | Amouroux, David
Hg accumulation in marine organisms depends strongly on in situ water or sediment biogeochemistry and levels of Hg pollution. To predict the rates of Hg exposure in human communities, it is important to understand Hg assimilation and processing within commercially harvested marine fish, like the European seabass Dicentrarchus labrax. Previously, values of Δ¹⁹⁹Hg and δ²⁰²Hg in muscle tissue successfully discriminated between seven populations of European seabass. In the present study, a multi-tissue approach was developed to assess the underlying processes behind such discrimination.We determined total Hg content (THg), the proportion of monomethyl-Hg (%MeHg), and Hg isotopic composition (e.g. Δ¹⁹⁹Hg and δ²⁰²Hg) in seabass liver. We compared this to the previously published data on muscle tissue and local anthropogenic Hg inputs.The first important finding of this study showed an increase of both %MeHg and δ²⁰²Hg values in muscle compared to liver in all populations, suggesting the occurrence of internal MeHg demethylation in seabass. This is the first evidence of such a process occurring in this species. Values for mass-dependent (MDF, δ²⁰²Hg) and mass-independent (MIF, Δ¹⁹⁹Hg) isotopic fractionation in liver and muscle accorded with data observed in estuarine fish (MDF, 0–1‰ and MIF, 0–0.7‰). Black Sea seabass stood out from other regions, presenting higher MIF values (≈1.5‰) in muscle and very low MDF (≈-1‰) in liver. This second finding suggests that under low Hg bioaccumulation, Hg isotopic composition may allow the detection of a shift in the habitat use of juvenile fish, such as for first-year Black Sea seabass.Our study supports the multi-tissue approach as a valid tool for refining the analysis of Hg sourcing and metabolism in a marine fish. The study’s major outcome indicates that Hg levels of pollution and fish foraging location are the main factors influencing Hg species accumulation and isotopic fractionation in the organisms.
اظهر المزيد [+] اقل [-]Characterizing outdoor infiltration and indoor contribution of PM2.5 with citizen-based low-cost monitoring data
2021
Bi, Jianzhao | Wallace, Lance A. | Sarnat, Jeremy A. | Liu, Yang
Epidemiological research on the adverse health outcomes due to PM₂.₅ exposure frequently relies on measurements from regulatory air quality monitors to provide ambient exposure estimates, whereas personal PM₂.₅ exposure may deviate from ambient concentrations due to outdoor infiltration and contributions from indoor sources. Research in quantifying infiltration factors (Fᵢₙf), the fraction of outdoor PM₂.₅ that infiltrates indoors, has been historically limited in space and time due to the high costs of monitor deployment and maintenance. Recently, the growth of openly accessible, citizen-based PM₂.₅ measurements provides an unprecedented opportunity to characterize Fᵢₙf at large spatiotemporal scales. In this analysis, 91 consumer-grade PurpleAir indoor/outdoor monitor pairs were identified in California (41 residential houses and 50 public/commercial buildings) during a 20-month period with around 650000 h of paired PM₂.₅ measurements. An empirical method was developed based on local polynomial regression to estimate site-specific Fᵢₙf. The estimated site-specific Fᵢₙf had a mean of 0.26 (25ᵗʰ, 75ᵗʰ percentiles: [0.15, 0.34]) with a mean bootstrap standard deviation of 0.04. The Fᵢₙf estimates were toward the lower end of those reported previously. A threshold of ambient PM₂.₅ concentration, approximately 30 μg/m³, below which indoor sources contributed substantially to personal exposures, was also identified. The quantified relationship between indoor source contributions and ambient PM₂.₅ concentrations could serve as a metric of exposure errors when using outdoor monitors as an exposure proxy (without considering indoor-generated PM₂.₅), which may be of interest to epidemiological research. The proposed method can be generalized to larger geographical areas to better quantify PM₂.₅ outdoor infiltration and personal exposure.
اظهر المزيد [+] اقل [-]Microplastics and trace metals in fish species of the Gulf of Mannar (Indian Ocean) and evaluation of human health
2021
Selvam, S. | Manisha, A. | Roy, Priyadarsi D. | Venkatramanan, S. | Chung, S.Y. | Muthukumar, P. | Jesuraja, K. | Elgorban, Abdallah M. | Ahmed, Bilal | Elzain, Hussam Eldin
The importance of microplastic (MPs) contamination in marine environments is reflected by increasing number of studies in fish species. Some even dedicated to the toxicological effects from the ingestion. Microplastics (MPs) and their trace metal composition were examined in the muscle and intestine of five commercially important fish species (i.e., Sufflamen fraenatus, Heniochus acuminatus, Atropus atropos, Pseudotriacanthus and Leiognathus brevirostris) from Thoothukudi at the Gulf of Mannar coast in south India. The abundance and morphology of MPs (size, shape, and texture) in muscle and intestinal were investigated by micro-Fourier Transform Infrared Spectroscopy (μ-FT-IR) and atomic force microscope (AFM). ICP-OES was used to investigate the adsorption/leaching of trace metals in microplastics in order to assess health risk for adults and children. Particles of 100–250 μm and white color dominated, and the mean abundances (items/100 g) of total MPs were more in Pseudotriacanthus (muscle: 51.2; intestine: 50.1) compared to Heniochus acuminatus (muscle: 9.6; intestine: 15), Leiognathus brevirostris (muscle: 12; intestine: 13.2) and Atropus atropus (muscle: 15.2; intestine: 44.1). Polyethylene (35.3%), polypropylene (27.2%), polyamide (nylon) (22.2%) and fiber (15.3%) represented the MPs present in muscles, and polyamide (nylon) (30.2%), polyethylene (28.1%), polypropylene (25.9%), and fiber (15.8%) composed the intestine MPs. We estimated possible consumption of 121–456 items of MPs/week by adults and about 19–68 items of MPs/week by children by considering the sizes of safe meals. Zn, Cu, Mn and Cr in these fish species reflected influence of the sewage waste. However, the non-carcinogenic risk evaluated through EDI, THQ, HI, and CR did not suggest any immediate health problem for the consumers.
اظهر المزيد [+] اقل [-]In vitro metabolic kinetics of cresyl diphenyl phosphate (CDP) in liver microsomes of crucian carp (Carassius carassius)
2021
Yan, Zhenfei | Feng, Chenglian | Jin, Xiaowei | Liu, Daqing | Hong, Yajun | Qiao, Yu | Bai, Yingchen | Moon, Hyo-Bang | Qadeer, Abdul | Wu, Fengchang
Cresyl diphenyl phosphate (CDP), as a kind of aryl substituted organophosphate esters (OPEs), is commonly used as emerging flame retardants and plasticizers detected in environmental media. Due to the accumulation of CDP in organisms, it is very important to discover the toxicological mechanism and metabolic process of CDP. Hence, liver microsomes of crucian carps (Carassius carassius) were prepared for in vitro metabolism kinetics assay to estimate metabolism rates of CDP. After 140 min incubation, the depletion of CDP accounted for 58.1%–77.1% (expect 0.5 and 2 μM) of the administrated concentrations. The depletion rates were best fitted to the Michaelis-Menten model (R² = 0.995), where maximum velocity (Vₘₐₓ) and Michaelis-Menten constant (Kₘ) were 12,700 ± 2120 pmol min⁻¹·mg⁻¹ protein and 1030 ± 212 μM, respectively. Moreover, the in vitro hepatic clearance (CLᵢₙₜ) of CDP was 12.3 μL min⁻¹·mg⁻¹ protein. Log Kₒw and bioconcentration factor (BCF) of aryl-OPEs were both higher than those of alkyl- and chlorinated-OPEs, indicating that CDP may easily accumulate in aquatic organisms. The results made clear that the metabolism rate of CDP was greater than those of other OPEs detected in liver microsomes in previous research. This paper was first of its kind to comprehensively investigate the in vitro metabolic kinetics of CDP in fish liver microsomes. The present study might provide useful information to understand the environmental fate and metabolic processes of these kinds of substances, and also provide a theoretical basis for the ecological risk assessment of emerging contaminants.
اظهر المزيد [+] اقل [-]Source profiles, emission factors and associated contributions to secondary pollution of volatile organic compounds (VOCs) emitted from a local petroleum refinery in Shandong
2021
Lv, Daqi | Lü, Sihua | Tan, Xin | Shao, Min | Xie, Shaodong | Wang, Lingfeng
An in-depth study was conducted to quantify and characterize VOC emissions from a petroleum refinery located in Shandong, China. The VOC emission inventory established in this study showed that storage tanks were the largest emission source, accounting for 56.4% of total emissions, followed by loading operations, wastewater collection and treatment system, process vents, and equipment leaks. Meanwhile, the localization factors for refining, storage tanks and loading operations were calculated, which were 1.33, 0.75 and 0.31g VOCs/kg crude oil refined. Furthermore, the characteristics of fugitive and organized emissions were determined for various processes and emission sources using a gas chromatography–mass spectrometry/flame ionization detection (GC-MS/FID) system. Most samples contained mainly alkanes, but the total VOC concentrations and key species varied greatly among processes. The source profile of the refinery, synthesized using the weighted average method, indicated that cis-2-butene (14.5%), n-pentane (10.2%), n-butane (7.4%), isopentane (6.5%) and MTBE (5.9%) were the major species released by this refinery. Assessment of O₃ and secondary organic aerosol formation potentials were completed, and the results indicated that cis-2-butene, m/p-xylene, toluene, n-pentane, isopentane, benzene, o-xylene and ethylbenzene were the active species for which treatment should be prioritized.
اظهر المزيد [+] اقل [-]Surveillance of ship emissions and fuel sulfur content based on imaging detection and multi-task deep learning
2021
Cao, Kai | Zhang, Zhenduo | Li, Ying | Xie, Ming | Zheng, Wenbo
Shipping makes up the major proportion of global transportation and results in an increasing emission of air pollutants. It accounts for 3.1%, 13%, and 15% of the annual global emissions of CO₂, SOₓ, and NOₓ, respectively. Hence, effective regulatory measures in line with the International Maritime Organization requirements regarding the fuel sulfur content (FSC) used in emission control areas are essential. An imaging detection approach is proposed to estimate SO₂, CO₂, and NO concentrations of exhaust gas and then calculate FSC based on the estimated gas concentrations. A multi-task deep neural network was used to extract the features from the ultraviolet and thermal infrared images of the exhaust plume. The network was trained to predict various gas concentrations. The results show high prediction accuracy for the remote monitoring of ship emissions.
اظهر المزيد [+] اقل [-]Prospects for ozone pollution control in China: An epidemiological perspective
2021
Li, Ang | Zhou, Quan | Xu, Qun
Severe surface ozone pollution has become widespread in China. To protect public health, Chinese scientific communities and government agencies have striven to mitigate ozone pollution. However, makers of pollution mitigation policies rarely consider epidemiological research, and communication between epidemiological researchers and the government is poor. Therefore, this article reviews the current mitigation policies and the National Ambient Air Quality Standard (NAAQS) for ozone from an epidemiological perspective and proposes recommendations for researchers and policy makers on the basis of epidemiological evidence. We review current nationwide ozone control measures for mitigating ozone pollution from four dimensions: the integration of ozone and particulate matter control, ozone precursors control, ozone control in different seasons, and regional cooperation on the prevention of ozone pollution. In addition, we present environmental and epidemiological evidence and propose recommendations and discuss relevant ozone metrics and the criteria values of the NAAQS. We finally conclude that the disease burden attributable to ozone exposure in China may be underestimated and that the epidemiological research regarding the health effects of integrating ozone and particulate matter control is insufficient. Furthermore, atmospheric volatile organic compounds are severely detrimental to health, and related control policies are urgently required in China. We recommend a greater focus on winter ozone pollution and conclude that the health benefits of regional cooperation on ozone control and prevention are salient. We argue that daily average ozone concentration may be a more biologically relevant ozone metric than those currently used by the NAAQS, and accumulating epidemiological evidence supports revision of the standards. This review provides new insight for ozone mitigation policies and related epidemiological studies in China.
اظهر المزيد [+] اقل [-]Abundance and environmental host range of the SXT/R391 ICEs in aquatic environmental communities
2021
Roman, Veronica L. | Merlin, Christophe | Baron, Sandrine | Larvor, Emeline | Le Devendec, Laetitia | Virta, Marko P.J. | Bellanger, Xavier
Mobile genetic elements (MGEs) such as plasmids or integrative conjugative elements (ICEs) are widely involved in the horizontal transfer of antibiotic resistant genes (ARGs), but their environmental host-range and reservoirs remain poorly known, as mainly assessed through the analysis of culturable and clinical bacterial isolates. In this study, we used a gradual approach for determining the environmental abundance and host-range of ICEs belonging to the SXT/R391 family, otherwise well known to bring ARGs in Vibrio spp. epidemic clones and other pathogens. First, by screening a set of aquatic bacteria libraries covering 1794 strains, we found that almost 1% of the isolates hosted an SXT/R391 element, all belonging to a narrow group of non-O1/non-O139 Vibrio cholerae. However, when SXT/R391 ICEs were then quantified in various aquatic communities, they appeared to be ubiquitous and relatively abundant, from 10⁻⁶ to 10⁻³ ICE copies per 16 S rDNA. Finally, the molecular exploration of the SXT/R391 host-range in two river ecosystems impacted by anthropogenic activities, using the single-cell genomic approach epicPCR, revealed several new SXT/R391 hosts mostly in the Proteobacteria phylum. Some, such as the pathogen Arcobacter cryaerophilus (Campylobacteraceae), have only been encountered in discharged treated wastewaters and downstream river waters, thus revealing a likely anthropogenic origin. Others, such as the non-pathogenic bacterium Neptunomonas acidivorans (Oceanospirillaceae), were solely identified in rivers waters upstream and downstream the treated wastewaters discharge points and may intrinsically belong to the SXT/R391 environmental reservoir. This work points out that not only the ICEs of the SXT/R391 family are more abundant in the environment than anticipated, but also that a variety of unsuspected hosts may well represent a missing link in the environmental dissemination of MGEs from and to bacteria of anthropogenic origin.
اظهر المزيد [+] اقل [-]Construction of a regional inventory to characterize polycyclic aromatic hydrocarbon emissions from coal-fired power plants in Anhui, China from 2010 to 2030
2021
Wang, Ruwei | Cai, Jiawei | Cai, Feixuan | Xia, Linlin | Sun, Xiangfei | Zeng, E. Y. (Eddy Y.)
The infrastructures of coal-fired power plants in China have changed significantly since 2010, but the magnitude and characteristics of polycyclic aromatic hydrocarbon (PAH) emissions remain to be updated. In the present study, a unit-based PAH emission inventory for coal-fired power plants between 2010 and 2017 was constructed for Anhui Province, China. Atmospheric PAH emissions from pulverized coal (PC) and circulating fluidized bed (CFB) units in 2017 were 8600 kg and 7800 kg, respectively. The emission rates and intensities for CFB units (7.2 kg ton⁻¹ and 2.1 kg MW⁻¹) were significantly higher than those for PC units (1.1 kg ton⁻¹ and 0.19 kg MW⁻¹), primarily because CFB boilers were operated at lower combustion temperatures and poor combustion conditions compared to PC boilers. The distribution patterns of PAH emissions across different age groups largely reflected the time periods for constructing coal-fired units in Anhui and for the transition of small units to large ones. The accomplishment of ultralow emission technologies and phase-out of outdated coal-fired units were responsible for the decreasing trend of PAH emissions between 2012 and 2017. The warmer summer in 2013 and 2017 and colder winter in 2011 compared to other years probably caused increased use of air conditioners, resulting in increased electricity consumption and PAH emissions. Future PAH emissions would decrease by 45–57% during 2017–2030, benefitting from power plant fleet optimization, i.e., phasing out outdated coal-fired units and replacing them with large ones. With the best available optimized power plant fleets and end-of-pipe control measures accomplished in Anhui’s CFPPs, PAH emissions in 2030 would potentially be reduced by 56–65%.
اظهر المزيد [+] اقل [-]Seasonal variations in atrazine degradation in a typical semienclosed bay of the northwest Pacific ocean
2021
Wang, Zihan | Ouyang, Wei | Tysklind, Mats | Lin, Chunye | Wang, Baodong
Pesticides are widely used to alleviate pest pressure in agricultural systems, and atrazine is a typical diffuse pollutant and serves a sensitivity index for environmental characteristics. Based on the physicochemical properties of parent substances, degradation products of pesticides may pose a greater threat to aquatic ecosystems than pesticides. Atrazine and three primary degradation products (deethylatrazine (DEA), deisopropylatrazine (DIA) and didealkylatrazine (DDA)) were investigated in a semienclosed bay of the western Pacific Ocean. Seasonal surface water and suspended particulate sediment (SPS) samples were collected from the estuary and bay in January, April, and August 2019. The level of pesticide contamination was lower in the bay than in the estuary, and the pesticide concentration in the dissolved phase was higher than that in the adsorbed phase. The average concentrations of atrazine and the three degradation products in the three seasons ranged from 2.42 to 328.46 ng/L in water and from 0.07 to 12.75 ng/L in SPS. The proportion of atrazine among the four detected pollutants decreased from 0.7 to 0.1 in surface water and from 0.3 to 0.1 in SPS over the seasons. As the main degradation products, the concentration proportions of DDA and DEA reached as high as 0.6 in August. The ratio of DEA to atrazine (DEA/ATR) increased from January to August, which indicated the progressive degradation process in the bay. Single-factor analysis of variance and principal component analysis indicated that atrazine degradation was sensitive to temperature, dissolved oxygen, and salinity. These three factors accounted for almost 70% of the seasonal variance in atrazine without a quantification assessment of photolysis or bacteria. The spatial distributions of DEA in the three seasons demonstrated that wind and currents also played important roles in pollutant redistribution. The seasonal temporal and spatial correlations between water and SPS demonstrated the degradation patterns of atrazine in marine conditions, supporting the need for future detailed toxicity studies.
اظهر المزيد [+] اقل [-]