خيارات البحث
النتائج 71 - 80 من 7,921
Removal of Thymol Blue from Aqueous Solution by Natural and Modified Bentonite: Comparative Analysis of ANN and ANFIS Models for the Prediction of Removal Percentage
2021
Koyuncu, Hülya | Aldemir, Adnan | Kul, Ali Rıza | Canayaz, Murat
In this study natural bentonite (NB) and acid-thermal co-modified bentonite (MB) were utilized as adsorbents for the removal of Thymol Blue (TB) from aqueous solution. The batch adsorption experiments were conducted under different experimental conditions. The artificial neural network (ANN) and adaptive neuro fuzzy inference systems (ANFIS) were applied to estimate removal percentage (%) of TB. Mean squared error (MSE), root mean square error (RMSE) and coefficient of determination (R2) values were used to evaluate the results. In addition, the experimental data were fitted isotherm models (Langmuir, Freundlich and Temkin) and kinetic models (pseudo first order (PFO), pseudo second order (PSO) and intra-particle diffusion (IPD)). The adsorption of TB on both the NB and MB followed well the PSO kinetic model, and was best suited Langmuir isotherm model. When the temperature was increased from 298 K to 323 K for 20 mg/L of TB initial concentration, the removal percentage of TB onto the NB and MB increased from 74.91% to 84.07% and 81.19% to 93.12%, respectively. This results were confirmed by the positive ΔH° values indicated that the removal process was endothermic for both the NB and MB. The maximum adsorption capacity was found as 48.7805 mg/g and 117.6471 mg/g for the NB and MB, respectively (at 323 K). As a result, with high surface area and adsorption capacity, the MB is a great candidate for TB dye removal from wastewater, and the ANFIS model is better than the ANN model at estimating the removal percentage of the dye.
اظهر المزيد [+] اقل [-]Production of Eco-Friendly Geopolymer Concrete by using Waste Wood Ash for a Sustainable Environment
2021
Arunkumar, Kadarkarai | Muthukannan, Muthiah | Suresh Kumar, Arunachalam | Chithambar Ganesh, Arunasankar | Kanniga Devi, Rangaswamy
Climate change could be exacerbated by waste disposal problems, which destroy the ecosystem. Utilizing waste byproducts in creating eco-friendlier geopolymer concrete was hypothesised to be suitable and sustainable to overcome the negative impacts of wastes. The researchers had missed out on developing an alternate binder due to increasing demand for fly ash, high alkaline activators, and higher curing temperatures. This research used waste wood ash that is readily accessible in local restaurants and has an inherent potassium constituent. It has decided to replace the fly ash with waste wood ash obtained through nearby restaurants at intervals of 10 percent. The fresh and mechanical features have been discovered over long curing periods to assess the impact of waste wood ash. SEM and XRD have been used for characterising the microstructure of selected geopolymer mixes. In terms of setting properties and all mechanical parameters, replacing 30 percent waste wood ash produced enhanced results. The optimised mix could be used in geopolymer to replace fly ash and reduce the cost of alkaline activators while also reducing ecosystem damage.
اظهر المزيد [+] اقل [-]X-ray absorption spectroscopy evidence of sulfur-bound Cadmium in the Cd-hyperaccumulator Solanum nigrum and the non-accumulator Solanum melongena
2021
Pons, Marie-Noëlle | Collin, Blanche | Doelsch, Emmanuel | Chaurand, Perrine | Fehlauer, Till | Levard, Clément | Keller, Catherine | Rose, Jérôme
It has been proposed that non-protein thiols and organic acids play a major role in cadmium phytoavailability and distribution in plants. In the Cd-hyperaccumulator Solanum nigrum and non-accumulator Solanum melongena, the role of these organic ligands in the accumulation and detoxification mechanisms of Cd are debated. In this study, we used X-ray absorption spectroscopy to investigate Cd speciation in these plants (roots, stem, leaves) and in the soils used for their culture to unravel the plants responses to Cd exposure. The results show that Cd in the 100 mg.kg-1 Cd-doped clayey loam soil is sorbed onto iron oxyhydroxides. In both S. nigrum and S. melongena, Cd in roots and fresh leaves is mainly bound to thiol ligands, with a small contribution of inorganic S ligands in S. nigrum leaves. We interpret the Cd binding to sulfur ligands as detoxification mechanisms, possibly involving the sequestration of Cd complexed with glutathione or phytochelatins in the plant vacuoles. In the stems, results show an increase binding of Cd to -O ligands (>50% for S. nigrum). We suggest that Cd is partly complexed by organic acids for transportation in the sap.
اظهر المزيد [+] اقل [-]Distribution of pesticides and some of their transformation products in a small lentic waterbody: Fish, water, and sediment contamination in an agricultural watershed
2021
Slaby, Sylvain | Le Cor, François | Dufour, Vincent | Auger, Lucile | Pasquini, Laure | Cardoso, Olivier | Curtet, Laurence | Baudoin, Jean-Marc | Wiest, Laure | Vulliet, Emmanuelle | Feidt, Cyril | Dauchy, Xavier | BANAS, Damien
A comprehensive assessment of endocrine-disrupting chemicals in an Indian food basket: Levels, dietary intakes, and comparison with European data
2021
Sharma, Brij Mohan | Bharat, Girija K. | Chakraborty, Paromita | Martiník, Jakub | Audy, Ondřej | Kukučka, Petr | Přibylová, Petra | Kukreti, Praveen Kumar | Sharma, Anežka | Kalina, Jiří | Steindal, Eirik Hovland | Nizzetto, Luca
Endocrine-disrupting chemicals (EDCs) in diet are a health concern and their monitoring in food has been introduced in the European Union. In developing countries, EDC dietary exposure data are scarce, especially from areas perceived as pollution hotspots, including industrialized countries like India. Several persistent organic pollutants (POPs) act as EDCs and pose a pressure to human health mainly through dietary exposure. In the present study a range of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), dioxins and furans were measured in several food items collected in an Indian urban (Delhi) and a rural area (Dehradun). Food basket contamination data were used to estimate dietary exposure and compare it with that of the average European population estimated from available monitoring data. All targeted contaminants were found in most food items, especially in dairies and meat products. OCPs were the main contributors. Food supplied to Delhi's markets had higher contamination than that supplied to the peri-urban market in Dehradun. Despite looser control and restrictions, Indian dietary exposure of OCPs and PBDEs were comparable with that of Europe and were lower for PCBs and dioxins. Higher meat consumption in Europe only partly explained this pattern which was driven also by the higher residues in some European food items. A substantial part of endocrine disrupting potential in the diet derives from food and animal feeds internationally traded between developed and developing countries. With increasingly globalized food systems, internationally harmonized policies on EDC in food can lead to better protection of health in both these contexts. | publishedVersion
اظهر المزيد [+] اقل [-]Factors affecting farmers’ use of organic and inorganic fertilizers in South Asia
2021
Aryal, Jeetendra P | Sapkota, Tek Bahadur | Krupnik, Timothy J. | Rahut, Dil B | Jat, Mangi Lal | Stirling, Clare M
Fertilizer, though one of the most essential inputs for increasing agricultural production, is a leading cause of nitrous oxide emissions from agriculture, contributing significantly to global warming. Therefore, understanding factors affecting farmers’ use of fertilizers is crucial to develop strategies to improve its efficient use and to minimize its negative impacts. Using data from 2528 households across the Indo-Gangetic Plains in India, Nepal, and Bangladesh, this study examines the factors affecting farmers’ use of organic and inorganic fertilizers for the two most important cereal crops – rice and wheat. Together, these crops provide the bulk of calories consumed in the region. As nitrogen (N) fertilizer is the major source of global warming and other environmental effects, we also examine the factors contributing to its overuse. We applied multiple regression models to understand the factors influencing the use of inorganic fertilizer, Heckman models to understand the likelihood and intensity of organic fertilizer (manure) use, and a probit model to examine the over-use of N fertilizer. Our results indicate that various socio-economic and geographical factors influence the use of organic and inorganic fertilizers in rice and wheat. Across the study sites, N fertilizer over-use is the highest in Haryana (India) and the lowest in Nepal. Across all locations, farmers reported a decline in manure application, concomitant with a lack of awareness of the principles of appropriate fertilizer management that can limit environmental externalities. Educational programs highlighting measures to improving nutrient-use-efficiency and reducing the negative externalities of N fertilizer over-use are proposed to address these problems.
اظهر المزيد [+] اقل [-]A review on occurrence of emerging pollutants in waters of the MENA region
2021
Haddaoui, I. | Mateo-Sagasta, Javier
Little is known about the occurrence of emerging pollutants (EPs) in waters in the Middle East and North Africa (MENA) region despite the extensive use of low-quality water there. Available data dealing with the sources, occurrence and removal of EPs within the MENA region in different categories of water is collected, presented and analyzed in this literature review. According to the collected database, the occurrence and removal efficiency of EPs in the water matrix in the MENA region is available, respectively, for 13 and six countries of the 18 in total; no available data is registered for the rest. Altogether, 290 EPs have been observed in different water matrices across the MENA countries, stemming mainly from industrial effluents, agricultural practices, and discharge or reuse of treated wastewater (TWW). Pharmaceutical compounds figure among the most frequently reported compounds in wastewater, TWW, surface water, and drinking water. Nevertheless, pesticides are the most frequently detected pollutants in groundwater. Worryingly, 57 cases of EPs have been reported in different fresh and drinking waters, exceeding World Health Organization (WHO) and European Commission (EC) thresholds. Overall, pharmaceuticals, organic compounds, and pesticides are the most concerning EP groups. The review revealed the ineffectiveness of treatment processes used in the region to remove EPs. Negative removals of some EPs such as carbamazepine, erythromycin, and sulfamethoxazole were recorded, suggesting their possible accumulation or release during treatment. This underlines the need to set in place and strengthen control measures, treatment procedures, standards, and policies for such pollutants in the region.
اظهر المزيد [+] اقل [-]Changes to an urban marina soundscape associated with COVID-19 lockdown in Guadeloupe
2021
Bertucci, Frédéric | Lecchini, David | Greeven, Céline | Brooker, Rohan M | Minier, Lana | Cordonnier, Sébastien | René-Trouillefou, Malika | Parmentier, Eric
peer reviewed
اظهر المزيد [+] اقل [-]A review on occurrence of emerging pollutants in waters of the MENA region
2021
Haddaoui, I. | Mateo-Sagasta, Javier
Small-scale on-site treatment of fecal matter: comparison of treatments for resource recovery and sanitization
2021
Kelova, Mariya Evgenieva | Ali, Aasim Musa Mohamed | Eich-Greatorex, Susanne | Dörsch, Peter | Kallenborn, Roland | Jenssen, Petter D.
publishedVersion | On-site small-scale sanitation is common in rural areas and areas without infrastructure, but the treatment of the collected fecal matter can be inefficient and is seldom directed to resource recovery. The aim of this study was to compare low-technology solutions such as composting and lactic acid fermentation (LAF) followed by vermicomposting in terms of treatment efficiency, potential human and environmental risks, and stabilization of the material for reuse in agriculture. A specific and novel focus of the study was the fate of native pharmaceutical compounds in the fecal matter. Composting, with and without the addition of biochar, was monitored by temperature and CO2 production and compared with LAF. All treatments were run at three different ambient temperatures (7, 20, and 38°C) and followed by vermicomposting at room temperature. Materials resulting from composting and LAF were analyzed for fecal indicators, physicochemical characteristics, and residues of ten commonly used pharmaceuticals and compared to the initial substrate. Vermicomposting was used as secondary treatment and assessed by enumeration of Escherichia coli, worm density, and physicochemical characteristics. Composting at 38°C induced the highest microbial activity and resulted in better stability of the treated material, higher N content, lower numbers of fecal indicators, and less pharmaceutical compounds as compared to LAF. Even though analysis of pH after LAF suggested incomplete fermentation, E. coli cell numbers were significantly lower in all LAF treatments compared to composting at 7°C, and some of the anionic pharmaceutical compounds were detected in lower concentrations. The addition of approximately 5 vol % biochar to the composting did not yield significant differences in measured parameters. Vermicomposting further stabilized the material, and the treatments previously composted at 7°C and 20°C had the highest worm density. These results suggest that in small-scale decentralized sanitary facilities, the ambient temperatures can significantly influence the treatment and the options for safe reuse of the material.
اظهر المزيد [+] اقل [-]