خيارات البحث
النتائج 701 - 710 من 4,936
A mixture of persistent organic pollutants relevant for human exposure inhibits the transactivation activity of the aryl hydrocarbon receptor in vitro النص الكامل
2019
Doan, T.Q. | Berntsen, H.F. | Verhaegen, S. | Ropstad, E. | Connolly, L. | Igout, A. | Müller, M. | Scippo, M.L.
A mixture of persistent organic pollutants relevant for human exposure inhibits the transactivation activity of the aryl hydrocarbon receptor in vitro النص الكامل
2019
Doan, T.Q. | Berntsen, H.F. | Verhaegen, S. | Ropstad, E. | Connolly, L. | Igout, A. | Müller, M. | Scippo, M.L.
While humans are exposed to mixtures of persistent organic pollutants (POPs), their risk assessment is usually based on a chemical-by-chemical approach. To assess the health effects associated with mixed exposures, knowledge on mixture toxicity is required. Several POPs are potential ligands of the Aryl hydrocarbon receptor (AhR), which involves in xenobiotic metabolism and controls many biological pathways. This study assesses AhR agonistic and antagonistic activities of 29 POPs individually and in mixtures by using Chemical-Activated LUciferase gene eXpression bioassays with 3 transgenic cell lines (rat hepatoma DR-H4IIE, human hepatoma DR-Hep G2 and human mammary gland carcinoma DR-T47-D). Among the 29 POPs, which were selected based on their abundance in Scandinavian human blood, only 4 exerted AhR agonistic activities, while 16 were AhR antagonists in DR-H4IIE, 5 in DR-Hep G2 and 7 in DR-T47-D when tested individually. The total POP mixture revealed to be AhR antagonistic. It antagonized EC₅₀ TCDD inducing AhR transactivation at a concentration of 125 and 250 and 500 fold blood levels in DR-H4IIE, DR-T47-D and DR-Hep G2, respectively, although each compound was present at these concentrations lower than their LOEC values. Such values could occur in real-life in food contamination incidents or in exposed populations. In DR-H4IIE, the antagonism of the total POP mixture was due to chlorinated compounds and, in particular, to PCB-118 and PCB-138 which caused 90% of the antagonistic activity in the POP mixture. The 16 active AhR antagonists acted additively. Their mixed effect was predicted successfully by concentration addition or generalized concentration addition models, rather than independent action, with only two-fold IC₅₀ underestimation. We also attained good predictions for the full dose-response curve of the antagonistic activity of the total POP mixture.
اظهر المزيد [+] اقل [-]A mixture of persistent organic pollutants relevant for human exposure inhibits the transactivation activity of the aryl hydrocarbon receptor in vitro النص الكامل
2019
Doan, Thi-Que | Berntsen, Hanne | Verhaegen, Steven | Ropstad, Erik | Connolly, Lisa | Igout, Ahmed | Muller, Marc | Scippo, Marie-Louise | FARAH - Fundamental and Applied Research for Animals and Health - ULiège | GIGA-I3 - Giga-Infection, Immunity and Inflammation - ULiège
peer reviewed
اظهر المزيد [+] اقل [-]Identifying regional soil as the potential source of PM2.5 particulate matter on air filters collected in Imperial Valley, California – A Raman micro-spectroscopy study النص الكامل
2019
Ghosal, Sutapa | Wall, Stephen
This work explores the use of Raman micro-spectroscopy to determine sources of airborne particulate matter collected on PM₂.₅ air filters in Imperial Valley, California. The goal is to examine if nearby soil is a potential source of particles sampled on air filters deployed in an urbanized desert area during events of unusually high PM₂.₅ excursions. Particle specific composition information can be an indicator of potential origin. This can provide insights into the source of unexpectedly high proportion of large particles sampled on PM₂.₅ filters in the vicinity of Imperial Valley. The measured spectral correspondence between the filter and soil particles, in the size range of 2.5–10 μm, is consistent with windblown dust being a likely source of the larger (>2.5 μm) particles collected on the PM₂.₅ filters. Additionally, these particles were identified as components of commonly occurring crustal minerals in the vicinity of the sampling site, such as iron oxides, hydroxides, sulfides, titanium dioxides and aluminosilicates. A substantial portion of the analyzed filter particles displayed a strong broadband fluorescence signal, which is consistent with the presence of organic matter and has been recognized as a marker for soil related origin of the filter particles. Elemental carbon (soot) was found to be prevalent among the particles as well, suggesting the existence of combustion related sources. Comparison between a heavily loaded filter sample and a filter with a more typical, lower loading did not show any obvious difference in chemical compositions. In both cases the particles appeared to be of crustal origin with the prevalence of elemental carbon. The primary difference between these two filter samples appear to be their particle size distribution - the heavily loaded filter sample contained greater proportion of large particles (>2.5 μm), and was more consistent with spectral signature of soils analyzed from the region.
اظهر المزيد [+] اقل [-]Removing mercury from aqueous solution using sulfurized biochar and associated mechanisms النص الكامل
2019
Park, Jong Hwan | Wang, Jim J. | Zhou, Baoyue | Mikhael, Joseph E.R. | DeLaune, R. D.
Biochar has been used to remove heavy metals from aqueous solutions. In this study, a sulfurized wood biochar (SWB) by direct impregnation with elemental sulfur was produced and evaluated along with pristine wood biochar (WB) for adsorption characteristics and mechanism of mercury. Mercury adsorption by WB and SWB was well described by Langmuir model and pseudo second order model and the maximum adsorption capacities of WB and SWB were 57.8 and 107.5 mg g⁻¹, respectively. Intraparticle diffusion model showed that mercury adsorption was fast due to boundary layer and slow adsorption due to diffusion into biochar pores. Although, mercury adsorption by both WB and SWB was predominantly influenced by the pH, temperature, salt concentration, and biochar dosage, the SWB showed a relatively stable mercury adsorption compared to WB under different conditions, suggesting the strong affinity of SWB for mercury. The XPS analysis showed different adsorption mechanisms of mercury between WB and SWB. In particular, mercury adsorption in WB was due to Hg-Cπ bond formation and interaction with carboxyl and hydroxyl groups, whereas in SWB it is primarily due to mercury interaction with C-SOₓ-C and thiophenic groups in addition to Hg-Cπ bond formation and interaction with carboxyl groups. The SEM-EDS mapping also demonstrated that mercury in SWB was related to carbon, oxygen and sulfur. Overall, the sulfurized biochar was effective for removing mercury from aqueous solution, and its direct production through pyrolysis with elemental sulfur impregnation of wood chips could make it an economic option as absorbent for treating mercury-rich wastewater.
اظهر المزيد [+] اقل [-]Biotic factors drive distinct DNRA potential rates and contributions in typical Chinese shallow lake sediments النص الكامل
2019
Pang, Yunmeng | Ji, Guodong
Dissimilatory nitrate reduction to ammonia (DNRA) is an important nitrate reduction pathway in lake sediments; however, little is known about the biotic factors driving the DNRA potential rates and contributions to the fate of nitrate. This study reports the first investigation of DNRA potential rates and contributions in lake sediments linked to DNRA community structures. The results of ¹⁵N isotope-tracing incubation experiments showed that 12 lakes had distinct DNRA potentials, which could be clustered into 2 groups, one with higher DNRA potentials (rates varied from 2.7 to 5.0 nmol N g⁻¹ h⁻¹ and contributions varied from 27.5% to 35.4%) and another with lower potentials (rates varied from 0.6 to 2.3 nmol N g⁻¹ h⁻¹ and contributions varied from 8.1% to 22.8%). Sediment C/N and the abundance of the nrfA gene were the key abiotic and biotic factors accounting for the distinct DNRA potential rates, respectively. A high-throughput sequencing analysis of the nrfA gene revealed that the sediment C/N could also affect the DNRA potential rates by altering the ecological patterns of the DNRA community composition. In addition, the interactions between the DNRA community and the denitrifying community were found to be obviously different in the two groups. In the higher DNRA potential group, the DNRA community mainly interacted with heterotrophic denitrifiers, while in the lower DNRA potential group, both heterotrophic and sulfur-driven autotrophic denitrifiers might cooperate with the DNRA community. The present study highlighted the role of the sulfur-driven nitrate reduction pathway in C-limited sediments, which has always been overlooked in freshwater environments, and gave new insights into the molecular mechanism influencing the fate of nitrate.
اظهر المزيد [+] اقل [-]A case study of BTEX characteristics and health effects by major point sources of pollution during winter in Iran النص الكامل
2019
Baghani, Abbas Norouzian | Sorooshian, Armin | Heydari, Maryam | Sheikhi, Razieh | Golbaz, Somayeh | Ashournejad, Qadir | Kermani, Majid | Golkhorshidi, Faranak | Barkhordari, Abdullah | Jafari, Ahmad Jonidi | Delikhoon, Mahdieh | Shahsavani, Abbas
This study characterized spatio-temporal variations in the concentration of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds in the vicinity of gas and compressed natural gas (CNG) stations in Tehran, Iran. Health risk assessment (HRA) was computed using Monte Carlo simulations (MCS) for evaluating inhalation lifetime cancer risk (LTCR), the hazard quotient (HQ), and sensitivity analysis (SA) for BTEX exposure in different age groups (birth to <81) and as a function of distance (0–250 m) from the center of the stations. For all monitoring stations, the average values of benzene, toluene, ethylbenzene, and xylene in winter were 466.09 ± 132.25, 873.13 ± 233.51, 493.05 ± 141.22, and 910.57 ± 145.40 μg m⁻³, respectively. The mean wintertime ratios of T/B for the 12 stations ranged from 1.69 to 2.04. Furthermore, there was no significant relationship between the concentration of BTEX with either the specific month or distance from the center of stations (p > 0.05). Factors promoting BTEX formation in the study region were fuel evaporation and gas/CNG station emissions. The LTCRs for the target compounds in the winter for different age groups and distances from the center of stations was limited to 2.11 × 10⁻⁴ to 1.82 × 10⁻³ and 2.30 × 10⁻⁴ to 2.01 × 10⁻³, respectively, which exceeded proposed values by U.S. EPA. Moreover, the HQs for BTEX for three age groups and distances were limited to between 2.89 × 10⁻⁵ and 9.33 × 10⁻², which were lower than the acceptable limit (HQs < 1). The results of this work are applicable to similar areas that are heavily populated with vehicular traffic. This study motivates a closer look at mitigation strategies to limit the health effects of carcinogenic emissions such as benzene and ethylbenzene from gas/CNG stations.
اظهر المزيد [+] اقل [-]The role of exposure to phthalates in variations of anogenital distance: A systematic review and meta-analysis النص الكامل
2019
Zarean, Maryam | Keikha, Mojtaba | Feizi, Awat | Kazemitabaee, Maryamsadat | Kelishadi, Roya
Environmental chemicals such as phthalate esters may have adverse effects on anogenital distance (AGD), but the evidence in both genders has not been reviewed systematically. The objective of the present study is to conduct a systematic review and meta-analysis of studies that analyzed the relationship between exposure to phthalates and AGD. English papers published up to March 2018 were searched in PubMed, Scopus, Clarivate-Web of Science, and Google scholar. We applied fixed-effects models to calculate pooled beta coefficient [β]. In the case of heterogeneity, random-effects models were used. Using the comprehensive search strategies, 313 papers were identified and after screening, 10 of them were included in this study. In primary analyses, we found that exposure to phthalates was not associated with short AGD (β = −0.11; 95% CI, −0.27, 0.06; I² = 0%). However, results of subgroup analyses indicated that in boys, the sum of di-2-ethylhexyl phthalate (∑DEHP) metabolites had significant association with the risk of shortened anopenile distance (AGDAP) (β = −0.915, 95% CI: 1.629, −0.2) and anoscrotal distance (AGDAS) (β = −0.857, 95% CI: 1.455, −0.26). In addition, urinary monobutyl phthalate (MBP), monoethyl phthalate (MEP), and monoisobutyl phthalate (MiBP) were associated with short AGDAP. We also observed significant association between monobenzylphthalate (MBzP) and anofourchette distance (AGDAF) in girls. Our study provided findings on significant association of exposure to ∑DEHP metabolites, MBP, MEP, and MiBP with shortened AGDAP in boys. The mechanisms of phthalates effect on AGD may involve receptors and enzymes involved in steroidgenesis, negative influence on Leydig cells, cell proliferation, gonocyte cell numbers, and testosterone production.
اظهر المزيد [+] اقل [-]Bisphenol S induced epigenetic and transcriptional changes in human breast cancer cell line MCF-7 النص الكامل
2019
Huang, Wei | Zhao, Chao | Zhong, Huan | Zhang, Shoudong | Xia, Yiji | Cai, Zongwei
In recent years, concerns about using Bisphenol A (BPA) in daily consume products and its effects in many chronic human diseases have prompted the removal of BPA. However, the widely used BPA alternatives, including Bisphenol S (BPS), have a high structural similarity with BPA, suggesting that they may have similar biological effects towards human beings. Indeed, BPS was also found to have endocrine-disrupting effects. Epigenetic mechanism was reported to be involved in BPA-induced biological effects in both in vitro and in vivo models. However, there is no assessment on whether BPS could cause epigenetic changes. In this work, we investigated the possible epigenetic effects of BPS that might induce in human breast cancer cell line MCF-7. We found that BPS could change DNA methylation level of transposons. Besides, methylation status in promoter of breast cancer related genes CDH1, SFN, TNFRSF10C were also changed, which implied that BPS might play a role in the development of breast cancer. Gene expression profiling showed that some genes related to breast cancer progression were upregulated, including THBS4, PPARGC1A, CREB5, COL5A3. Gene ontology (GO) analysis of the differentially expressed genes revealed the significantly changes in PI3K-Akt signaling pathway and extracellular matrix, which were related to the proliferation, migration and invasion of breast cancer cells. These results illustrated that BPS exposure might play roles in the progression of breast cancer.
اظهر المزيد [+] اقل [-]Application of Matrix Scoring Techniques to evaluate marine debris sources in the remote islands of the Azores Archipelago النص الكامل
2019
Pieper, Catharina | Amaral-Zettler, Linda | Law, Kara Lavender | Loureiro, Clara Magalhães | Martins, Ana
Three-quarters of all marine debris (MD) consists of plastic, a reflection of their worldwide use, production and waste mismanagement. Data on MD distributions can improve our ability to effectively reduce debris that escapes onto shorelines and the ocean. In this study, the Matrix Scoring Technique (Marine Strategy Framework Directive Technical Group on Marine Litter) was applied as an approach to calculate the likelihood of single debris items originating from a series of potential sources. Factors considered were: identity and function of debris, beach location, influential activities, “mix” of debris found, presence of indicator items, and quantity of MD. The standing-stock (abundance and composition) of MD was investigated in two sandy beaches (Conceição and Porto Pim) of the Azores Archipelago (NE Atlantic) for the period 2012–2018. The results of this study show promise towards the implementation of a new classification method to determine beach debris sources in remote open-ocean areas.
اظهر المزيد [+] اقل [-]Air quality assessment in different environmental scenarios by the determination of typical heavy metals and Persistent Organic Pollutants in native lichen Xanthoria parietina النص الكامل
2019
Vitali, Matteo | Antonucci, Arianna | Owczarek, Malgorzata | Guidotti, Maurizio | Astolfi, Maria Luisa | Manigrasso, Maurizio | Avino, Pasquale | Bhattacharya, Badal | Protano, Carmela
The study was aimed to evaluate the ability of native lichen Xanthoria (X.) parietina to biomonitor and bioaccumulate some heavy metals (As, Cd, Co, Cr, Ni, Pb), PAHs, PCDDs, PCDFs, PCBs and PBDEs and to evaluate the use of the native X. parietina as a multi-tracer tool for scenarios characterized by different anthropogenic pressures. Samples of native X. parietina were collected in six different sites (two green, two residential and two industrial areas, respectively) and analyzed for the target compounds.The results show that X. parietina was a useful tool for the biomonitoring of air quality in the selected areas, and was able to bioaccumulate all the studied metals and POPs. In particular, the total concentrations dry weight (dw) ranged between 8.1 and 103.4 mg kg⁻¹ for metals, from 113 × 10³ to 183 × 10³ ng kg⁻¹ for PAHs, from 868 to 7685 ng kg⁻¹ for PCBs, from 14.3 to 113.8 ng kg⁻¹ for PCDDs/Fs (∑TEq = 0.9–7.1), and from 194 to 554 ng kg⁻¹ for PBDEs.Besides, in general, the levels of analytes recovered in the different samples of lichen show an increasing trend from green to industrial sites, especially for PCBs (mean values equal to 1218, 4253 and 7192 ng kg⁻¹ respectively for green, residential and industrial areas).The statistical approach, based on Pearson's correlation and principal component analysis tests, showed that one of the industrial sites was well-separated from the others, that resulted grouped due to some similarities.
اظهر المزيد [+] اقل [-]Use of multiple regression models for predicting the formation of bromoform and dibromochloromethane during ballast water treatment based on an advanced oxidation process النص الكامل
2019
Zhang, Xiaoye | Tian, Yiping | Zhang, Xiaofang | Bai, Mindong | Zhang, Zhitao
Disinfection byproducts (DBPs) generated by ballast water treatment have become a concern worldwide because of their potential threat to the marine environment. Predicting the relative DBP concentrations after disinfection could enable better control of DBP formation. However, there is no appropriate method of evaluating DBP formation in a full-scale ballast water treatment system (BWTS). In this study, multiple regression models were developed for predicting the dibromochloromethane (DBCM) and bromoform (TBM) concentrations produced by an emergency BWTS using field experimental data from ballast water treatments conducted at Dalian Port, China. Six combinations of independent variables [including several water parameters and/or the total residual oxidant (TRO) concentration] were evaluated to construct mathematical prediction formulas based on a polynomial linear model and logarithmic regression model. Further, statistical analyses were performed to verify and determine the appropriate mathematical models for DBCM and TBM formation, which were ultimately validated using additional field experimental data. The polynomial linear model with four variables (temperature, salinity, chlorophyll, and TRO) and the logarithmic regression model with seven variables (temperature, salinity, dissolved oxygen, pH, turbidity, chlorophyll, and TRO) exhibited good reproducibility and could be used to predict the DBCM and TBM concentrations, respectively. The validation results indicated that the developed models could accurately predict DBP concentrations, with no significant statistical difference from the measured values. The results of this work could provide a theoretical basis and data reference for ballast water treatment control in engineering applications of emergency BWTSs.
اظهر المزيد [+] اقل [-]