خيارات البحث
النتائج 711 - 720 من 4,935
Chronic exposure to environmental levels of cis-bifenthrin: Enantioselectivity and reproductive effects on zebrafish (Danio rerio) النص الكامل
2019
Xiang, Dandan | Zhong, Linxi | Shen, Shuyuan | Song, Zhuoying | Zhu, Guonian | Wang, Mengcen | Wang, Qiangwei | Zhou, Bingsheng
Synthetic pyrethroids (SPs) are broadly used to control pests and have been widely detected in aquatic environments, prompting concern over its risk to the health of non-target organisms. The present study evaluated whether long-term (60 d) exposure to low doses (0, 20, 100, and 500 ng/L) of cis-BF enantiomers (1S-cis-BF and 1R-cis-BF) could cause reproductive endocrine disturbance to zebrafish. Exposure to 1S-cis-BF has stronger reproductive impairment effect than 1R-enantiomer, indicating that the enantioselectivity of cis-BF on fish reproduction. Significant decrease of cumulative spawning of zebrafish was observed as a result of cis-BF exposure. And the retardations of testis and ovaries development found in histopathological section were suggested to be important cause for the decreased fecundity. Cis-BF decreased the total motility of sperm but did not affect sperm density. Relatively high levels of cis-BF detected in the gonads of males and females may directly impair gametogenesis. In addition, alterations in the expression of key genes (cyp17, cyp19a and 17β-hsd) associated with reproductive endocrine pathways were correlated well with the significant changes in sex hormone contents (E2 and T) and these results may relate to gonadal development and maturation of germ cells in females or/and males which were suspected to be a likely underlying mechanism. Furthermore, the reduction of quality of F1 embryo derived from the unexposed females and exposed males (UE♀ × E♂) demonstrated that male exposure had greater adverse effects on offspring. Our results indicate that long term, low dose exposure to cis-BF can enantioselectively impair the reproduction system of fish, and induce toxicity related abnormalities in non-exposed offspring. This study has important implications for environmental risk assessment of chiral pesticides that are concurrently present in aquatic systems.
اظهر المزيد [+] اقل [-]The relationships between PM2.5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations النص الكامل
2019
Yang, Qian | Yuan, Qiangqiang | Yue, Linwei | Li, Tongwen | Shen, Huanfeng | Zhang, Liangpei
Satellite aerosol products have been widely used to retrieve ground PM₂.₅ concentration because of their wide coverage and continuous spatial distribution. While more and more studies have focused on the retrieval algorithms, the foundation for the retrieval—relationship between PM₂.₅ and satellite aerosol optical depth (AOD) has not been fully investigated. In this study, the relationships between PM₂.₅ and AOD were investigated in 368 cities in mainland China from February 2013 to December 2017, at different temporal and regional scales. Pearson correlation coefficients and the PM₂.₅/AOD ratio were used as indicators. Firstly, we established the relationship between PM₂.₅ and AOD in terms of the spatio-temporal variations, and discuss the impact of some potential factors for a better understanding of the spatio-temporal variations. Spatially, we found that the correlation is higher in the Beijing-Tianjin-Hebei and Chengyu regions and weaker in coastal areas. The PM₂.₅/AOD ratio shows an obvious north–south difference, with the ratio in North China higher than South China. Temporally, the correlation coefficient tends to be higher in May and September, with the PM₂.₅/AOD ratio higher in winter and lower in summer. As for interannual variations, we detected a decreasing tendency for the PM₂.₅-AOD correlation and PM₂.₅/AOD ratio for recent years. Then, to determine the impact of the weakening of the PM₂.₅-AOD relationship on PM₂.₅ remote sensing retrieval performance, a geographically weighted regression (GWR) retrieval experiment was conducted. The results showed that the performance of retrievals is also decreasing while PM₂.₅-AOD relationship getting weaker. Our study investigated the PM₂.₅-AOD relationship over a large extent at the city scale, and investigated the temporal variations in terms of interannual variations. The results will be useful for the satellite retrieval of PM₂.₅ concentration and will help us to further understand the PM₂.₅ pollution situation in mainland China.
اظهر المزيد [+] اقل [-]The effects of prosperity indices and land use indicators of an urban conurbation on the occurrence of hexabromocyclododecanes and tetrabromobisphenol A in surface soil in South China النص الكامل
2019
Gao, Chong-Jing | Xia, Lin-Lin | Wu, Chen-Chou | Wong, Charles S. | Guo, Ying
Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) are legacy brominated flame retardants which are still produced and used in China. In this study, 187 surface soils from the Pearl River Delta (PRD) urban conurbation in China were collected, and the effects of urban conurbation development on the concentrations, distributions and human exposure risk of HBCDs and TBBPA were investigated. The concentration ranges of Σ3HBCD (sum of α-, β-, and γ-HBCD) and TBBPA in soil were below the limit of quantification (<LOQ) to 300 ng g−1 dry weight (dw) and < LOQ to 53.1 ng g−1 dw, respectively. Concentration levels of HBCDs and TBBPA in the PRD were affected both by distributions of land-use type and by the location of the city. Soils from residential areas contained the highest concentrations of Σ3HBCD (median: 1.75 ng g−1 dw) and TBBPA (1.92 ng g−1 dw) among all land-use types. In addition, soils from the central PRD had higher Σ3HBCD and TBBPA levels (0.46 and 0.90 ng g−1 dw) than those from the surrounding areas (0.17 and 0.07 ng g−1 dw). The concentrations of Σ3HBCD and TBBPA were highly correlated with urbanization level, population density, regional GDP and per capita income in all cities studied (p < 0.01), which indicates that the prosperity of the urban conurbation may play an important role in soil contamination of HBCDs and TBBPA in the PRD. Children living in residential areas had the highest estimated daily intakes of Σ3HBCD (7.09 pg kg−1 d−1) and TBBPA (7.76 pg kg−1 d−1), suggesting that people living in residential areas have a relatively higher exposure risk of HBCDs and TBBPA. This is a comprehensive study to report the effects of prosperity indices and land use indicators of an urban conurbation on the occurrence of HBCDs and TBBPA in soil in China.
اظهر المزيد [+] اقل [-]Sex-specific associations of autism spectrum disorder with residential air pollution exposure in a large Southern California pregnancy cohort النص الكامل
2019
Jo, Heejoo | Eckel, Sandrah P. | Wang, Xinhui | Chen, Jiu-Chiuan | Cockburn, Myles | Martinez, Mayra P. | Chow, Ting | Molshatzki, Noa | Lurmann, Frederick W. | Funk, William E. | Xiang, Anny H. | McConnell, Rob
Autism spectrum disorder (ASD) affects more boys than girls. Recent animal studies found that early life exposure to ambient particles caused autism-like behaviors only in males. However, there has been little study of sex-specificity of effects on ASD in humans. We evaluated ASD risk associated with prenatal and first year of life exposures to particulate matter less than 2.5 μm in aerodynamic diameter (PM₂.₅) by child sex. This retrospective cohort study included 246,420 singleton children born in Kaiser Permanente Southern California (KPSC) hospitals between 1999 and 2009. The cohort was followed from birth through age five to identify 2471 ASD cases from the electronic medical record. Ambient PM₂.₅ and other regional air pollution measurements (PM less than 10 μm, ozone, nitrogen dioxide) from regulatory air monitoring stations were interpolated to estimate exposure during each trimester and first year of life at each geocoded birth address. Hazard ratios (HRs) were estimated using Cox regression models to adjust for birth year, KPSC medical center service areas, and relevant maternal and child characteristics. Adjusted HRs per 6.5 μg/m³ PM₂.₅ were elevated during entire pregnancy [1.17 (95% confidence interval (CI), 1.04–1.33)]; first trimester [1.10 (95% CI, 1.02–1.19)]; third trimester [1.08 (1.00–1.18)]; and first year of life [1.21 (95% CI, 1.05–1.40)]. Only the first trimester association remained robust to adjustment for other exposure windows, and was specific to boys only (HR = 1.18; 95% CI, 1.08–1.27); there was no association in girls (HR = 0.90; 95% CI, 0.76–1.07; interaction p-value 0.03). There were no statistically significant associations with other pollutants. PM₂.₅-associated ASD risk was stronger in boys, consistent with findings from recent animal studies. Further studies are needed to better understand these sexually dimorphic neurodevelopmental associations.
اظهر المزيد [+] اقل [-]Microplastic removal by Red Sea giant clam (Tridacna maxima) النص الكامل
2019
Arossa, Silvia | Martin, Cecilia | Rossbach, Susann | Duarte, Carlos M.
This study assesses for the first time the ingestion of microplastics by giant clams and evaluates their importance as a sink for this pollutant. A total of 24 individuals of two size classes were collected from the Red Sea and then exposed for 12 days to 4 concentrations of polyethylene microbeads ranging from 53 to 500 μm. Experiments revealed that clams actively take up microplastic from the water column and the average of beads retained inside the animal was ∼7.55 ± 1.89 beads individual −1 day −1 (5.76 ± 1.16 MPs/g dw). However, the digestive tract itself cannot be considered the only sink of microbeads in Tridacnids. Indeed, shells play a key role as well. The abundance of microplastic adhering to the shells, which was estimated directly, was positively correlated to the concentration of beads found in the surrounding seawater. Therefore, clams’ shells contribute to the removal of 66.03 ± 2.50% of the microplastic present in the water column. Furthermore, stress responses to the exposure to polyethylene were investigated. Gross Primary Production:Respiration (GPP:R) ratio decreased throughout of the experiment, but no significant difference was found between treatments and controls.
اظهر المزيد [+] اقل [-]The effect of dissolved nickel and copper on the adult coral Acropora muricata and its microbiome النص الكامل
2019
Gissi, Francesca | Reichelt-Brushett, Amanda J. | Chariton, Anthony A. | Stauber, Jenny L. | Greenfield, Paul | Humphrey, Craig | Salmon, Matt | Stephenson, Sarah A. | Cresswell, Tom | Jolley, Dianne F.
The potential impacts of mining activities on tropical coastal ecosystems are poorly understood. In particular, limited information is available on the effects of metals on scleractinian corals which are foundation species that form vital structural habitats supporting other biota. This study investigated the effects of dissolved nickel and copper on the coral Acropora muricata and its associated microbiota. Corals collected from the Great Barrier Reef were exposed to dissolved nickel (45, 90, 470, 900 and 9050 μg Ni/L) or copper (4, 11, 32 and 65 μg Cu/L) in flow through chambers at the National Sea Simulator, Townsville, Qld, Australia. After a 96-h exposure DNA metabarcoding (16S rDNA and 18S rDNA) was undertaken on all samples to detect changes in the structure of the coral microbiome. The controls remained healthy throughout the study period. After 36 h, bleaching was only observed in corals exposed to 32 and 65 μg Cu/L and very high nickel concentrations (9050 μg Ni/L). At 96 h, significant discolouration of corals was only observed in 470 and 900 μg Ni/L treatments, the highest concentrations tested. While high concentrations of nickel caused bleaching, no changes in the composition of their microbiome communities were observed. In contrast, exposure to copper not only resulted in bleaching, but altered the composition of both the eukaryote and bacterial communities of the coral's microbiomes. Our findings showed that these effects were only evident at relatively high concentrations of nickel and copper, reflecting concentrations observed only in extremely polluted environments. Elevated metal concentrations have the capacity to alter the microbiomes which are inherently linked to coral health.
اظهر المزيد [+] اقل [-]An optimized density-based approach for extracting microplastics from soil and sediment samples النص الكامل
2019
Han, Xiaoxin | Lu, Xueqiang | Vogt, Rolf D.
Microplastic pollution in the environment has received growing attention worldwide. A major impediment for accurate measurements of microplastics in environmental matrixes is to extract the particles. The most commonly-used method for separation from soil or sediment is flotation in dense liquid based on the relatively low density of plastic particles. This study provides an improved and optimized process for extraction of microplastic particles by modifying the floatation technique and floatation solution. Microplastics in soils and sediments are extracted by adding 200 g dry soil or sediment sample to 1.3 L mix of the saturated NaCl and NaI solutions in a volume ratio of 1:1 and aerating for 40 s then filtering the supernatant. The accuracy and precision of the new approach is validated by recovery experiments using soil and sediment samples spiked with six common microplastic compounds: polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS) and expanded polystyrene (EPS), and comparison with the previous method. The optimized approach is further compared with the previous approach using the real soil and sediment samples.
اظهر المزيد [+] اقل [-]Dispersion-box modeling investigation of the influences of gasoline, diesel, M85 and E85 vehicle exhaust emission on photochemistry النص الكامل
2019
Gabay, Maor | Tas, Eran
Alternative transportation fuels (ATFs) can reduce air pollution. However, the influence of conventional fuels—diesel and gasoline, and particularly ATFs on photochemical air pollution is not well-characterized, limiting assessments of ATFs and air quality. This is mainly due to frequent use of lumped chemical mechanisms by related atmospheric modeling. Here we hypothesized that applying a chemical mechanism that is specifically developed according to both emission fractions and photochemical ozone creation potential of volatile organic compounds (VOCs) is key to gaining reliable insights into the impact of transportation fuels on photochemistry. We used a heterogeneous chemical mechanism with 927 reactions and relatively detailed emission inventories to specifically meet the requirements for reliable simulation of the effect of exhaust emissions from vehicles fueled by selected model fuels—diesel, gasoline, and mixtures of 15% gasoline with 85% ethanol (E85) or 85% methanol (M85)—on photochemistry. These dispersion-box model simulations revealed a strong influence of atmospheric background balance between VOCs and nitrogen oxides (NOX = [NO] + [NO2]) on the impact of exhaust emissions on photochemistry, with higher tendency toward ozone (O3) formation or destruction for more VOC-limited or NOX-limited conditions, respectively. Accordingly, higher [NOX]/[VOC] exhaust emission, such as from diesel and M85, resulted in lower O3, not only locally but also downwind of the emission. This offers a new perspective and measure for transportation fuel assessment. Rapid conversion of O3 to hydroxyl and hydroperoxyl radicals downwind of the exhaust emission indicates the importance of simulating the impact of road transportation on photochemistry at high spatial and temporal resolution. Peroxyacetyl nitrate formation was more sensitive to VOC emission under VOC-limited conditions than to NOX emission under NOX-limited conditions. Secondary formaldehyde dominated over primary emitted formaldehyde several minutes after emission. These findings should be verified using a 3D modeling study under varying meteorological conditions.
اظهر المزيد [+] اقل [-]The effect of hydrodynamic forces of drying/wetting cycles on the release of soluble reactive phosphorus from sediment النص الكامل
2019
Ding, Jue | Hua, Zulin | Chu, Kejian
Soluble reactive phosphorus (SRP) that is released from sediment plays an important role in contributing to a lake's eutrophication. Much of the work that has studied sediment release has been conducted in the submerged bottom sediment of lakes. Less attention has paid to the littoral zones near land boundaries where the hydrodynamic disturbance of drying/wetting cycles dominates. To date, the release mechanism under drying/wetting cycles has not been revealed quantitatively. In this study, we conducted a series of laboratory experiments to evaluate the effect of varied frequencies of drying/wetting cycles to the efflux of SRP from sediment. We tested SRP, Fe2+, pH, and redox condition (pE) in overlying water under three frequencies of 24, 9, and 2.77 day−1 (F1, F2, and F3, respectively). SRP concentrations of F1, F2, and F3 experimental conditions were 3.46, 1.73, and 1.38 times that of a static experimental condition, respectively, showing a significant difference (p < 0.05) among the conditions. The overlying water under drying/wetting cycles varied in weak-base and low-redox status, which facilitated ion release. The SRP concentration of the porewater varied with the different frequencies of drying/wetting cycles. These results suggested that the variation of SRP in the porewater was strongly correlated with SRP release (R2 = 0.809). Drying/wetting cycles enhanced the mobilization and release of SRP from the sediment to the overlying water through porewater exchange. The evaluation model emphasized that porewater exchange made the greatest contribution to SRP release and a higher frequency of drying/wetting cycles may have promoted this exchange of porewater between the sediment and overlying water, thus facilitating the release of SRP.
اظهر المزيد [+] اقل [-]Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site النص الكامل
2019
Luo, Youfa | Wu, Yonggui | Shu, Jie | Wu, Zhixue
Particulate organic matter (POM) significantly affects the distribution of heavy metals in contaminated soil. However, the effect of POM on the fate of heavy metals during in situ-aided phytostabilization of waste slag is unclear. The objective of this study was to investigate the distributions of heavy metals such as Cu, Pb, Zn, and Cd in the POM fractions at a zinc smelting waste slag site under in situ-aided phytostabilization after five years. The results showed that the litters and residues of four plants―Arundo donax, Broussonetia papyrifera, Cryptomeria fortunei, and Robinia pseudoacacia―decomposed to form different POM size fractions. The percentage of the 0.05–0.25 mm POM size fraction was the highest, followed by the >1 mm and 0.5–1 mm POM size fractions, and that of the 0.25–0.5 mm POM size fraction was the lowest. The masses of POM derived from the four plants were in the following order: C. fortunei > B. papyrifera > A. donax > R. pseudoacacia. The contents, enrichment coefficients, and mass loads of heavy metals such as Cu, Pb, Zn, and Cd in the POM increased with decreasing POM size, and those in the 0.05–0.25 mm POM size fraction were the highest. The mass load of heavy metals in the POM occurred in the following order: Cu > Cd > Zn > Pb. The surfaces of the POM with coarser and smaller size fractions were smoother and rougher, respectively, and the smaller POM size fractions had larger specific surface areas. The main functional groups in the different POM size fractions were –COOH, –OH, CO, CC, C–H, Si–O, and –CH₃. The POM fractions played a significant role in determining the distribution of heavy metals in the revegetated waste slag. These findings have important implications for aided phytostabilization, which significantly influences the fate and speciation of heavy metals at the phytoremediation site.
اظهر المزيد [+] اقل [-]