خيارات البحث
النتائج 711 - 720 من 8,010
Microplastic pollution in the Weser estuary and the German North Sea النص الكامل
2021
Roscher, Lisa | Fehres, Annika | Reisel, Lorenz | Halbach, Maurits | Scholz-Böttcher, Barbara | Gerriets, Michaela | Badewien, Thomas H. | Shiravani, Gholamreza | Wurpts, Andreas | Primpke, Sebastian | Gerdts, Gunnar
Microplastic pollution in the Weser estuary and the German North Sea النص الكامل
2021
Roscher, Lisa | Fehres, Annika | Reisel, Lorenz | Halbach, Maurits | Scholz-Böttcher, Barbara | Gerriets, Michaela | Badewien, Thomas H. | Shiravani, Gholamreza | Wurpts, Andreas | Primpke, Sebastian | Gerdts, Gunnar
Microplastics (MP) are defined as synthetic organic pollutants sized <5 mm and have been recorded in various environments worldwide. Due to their small size, they pose a potential risk for many organisms throughout the food web. However, little is known about MP distribution patterns and associated transport mechanisms. Rivers may act as pathways for MP into marine environments. In this study, we investigate the occurrence of MP in the estuary and lower stretch of the second-largest German River, the Weser, representative of a significant interface between fresh water and marine environments. The aim of the study was to enhance the general understanding by providing novel, comprehensive data and suggestions for future studies on estuarine systems. Surface water samples of two different size classes were collected by ship using an on-board filtration system (11–500 μm fraction) and net sampling (500–5000 μm fraction). After a thorough sample preparation, all samples were analysed with Focal Plane Array (FPA) Fourier Transform Infrared (FTIR) spectroscopy and Attenuated Total Reflection (ATR) FTIR spectroscopy in order to obtain information on MP concentrations, polymer composition and size distribution. Our findings show highest concentrations in the 11–500 μm fraction (2.3 × 10¹ − 9.7 × 10³ MP m⁻³), with the polymer cluster acrylates/polyurethanes(PUR)/varnish being dominant. The >500 μm fraction was dominated by polyethylene. Estimated MP concentrations generally increased in the Turbidity Maximum Zone (TMZ) and decreased towards the open sea. This study contributes to the current research by providing novel insights into the MP pollution of the estuary and lower stretch of an important European river and provides implications for future MP monitoring measures.
اظهر المزيد [+] اقل [-]Microplastic pollution in the Weser estuary and the German North Sea
Microplastic pollution in the Weser estuary and the German North Sea النص الكامل
2021
Roscher, Lisa | Fehres, Annika | Reisel, Lorenz | Halbach, Maurits | Scholz-Böttcher, Barbara M. | Gerriets, Michaela | Badewien, Thomas | Shiravani, Gholamreza | Wurpts, Andreas | Primpke, Sebastian | Gerdts, Gunnar
Microplastics (MP) are defined as synthetic organic pollutants sized <5 mm and have been recorded in various environments worldwide. Due to their small size, they pose a potential risk for many organisms throughout the food web. However, little is known about MP distribution patterns and associated transport mechanisms. Rivers may act as pathways for MP into marine environments. In this study, we investigate the occurrence of MP in the estuary and lower stretch of the second-largest German River, the Weser, representative of a significant interface between fresh water and marine environments. The aim of the study was to enhance the general understanding by providing novel, comprehensive data and suggestions for future studies on estuarine systems. Surface water samples of two different size classes were collected by ship using an on-board filtration system (11-500 µm fraction) and net sampling (500-5000 µm fraction). After a thorough sample preparation, all samples were analysed with Focal Plane Array (FPA) Fourier Transform Infrared (FTIR) spectroscopy and Attenuated Total Reflection (ATR) FTIR spectroscopy in order to obtain information on MP concentrations, polymer composition and size distribution. Our findings show highest concentrations in the 11-500 µm fraction (2.3 × 101 − 9.7 × 103 m−3), with the polymer cluster acrylates/polyurethanes/varnish being dominant. The >500 µm fraction was dominated by polyethylene. Estimated MP concentrations generally increased in the Turbidity Maximum Zone (TMZ) and decreased towards the open sea. This study contributes to the current research by providing novel insights into the MP pollution of the estuary and lower stretch of an important European river and provides implications for future MP monitoring measures.
اظهر المزيد [+] اقل [-]Abundances of small microplastics (S-MP, 11-500 µm) in surface waters of the Weser estuary and the German North Sea (April 2018) النص الكامل
2021
Roscher, Lisa | Fehres, Annika | Reisel, Lorenz | Halbach, Maurits | Scholz-Böttcher, Barbara | Gerriets, Michaela | Badewien, Thomas Henry | Shiravani, Gholamreza | Wurpts, Andreas | Primpke, Sebastian | Gerdts, Gunnar
In order to assess pollution with small microplastics (S-MP, 11-500 µm) in the Lower Weser and transition to the German North Sea, surface water samples were collected with the RV Otzum (ICBM, Institute for Chemistry and Biology of the Marine Environment), as well as with the RV Uthörn (AWI, Alfred-Wegener-Institute) in April 2018. Sampling was performed using a pumping system containing of a floating suction basket (mesh size: 500 µm) for pre-filtration, followed by the concentration onto a 15 µm stainless steel screen. Samples were isolated from the filter screens in the laboratory, thoroughly processed and measured via µFTIR imaging. Dominant polymer type in the S-MP sample fraction was acrylates/polyurethanes/varnish, and concentrations ranged between 2.3 × 10¹ and 9.7 × 10³ m⁻³, with maximum values in the area of the turbidity Maximum Zone of the River Weser.
اظهر المزيد [+] اقل [-]Abundances of large microplastics (L-MP, 500-5000 µm) in surface waters of the Weser estuary and the German North Sea (April 2018) النص الكامل
2021
Roscher, Lisa | Fehres, Annika | Reisel, Lorenz | Halbach, Maurits | Scholz-Böttcher, Barbara | Gerriets, Michaela | Badewien, Thomas Henry | Shiravani, Gholamreza | Wurpts, Andreas | Primpke, Sebastian | Gerdts, Gunnar
In order to assess pollution with large microplastics (L-MP, 500-5000 µm) in the Lower Weser and transition to the German North Sea, surface water samples were collected with the RV Otzum (ICBM, Institute for Chemistry and Biology of the Marine Environment), as well as with the RV Uthörn (AWI, Alfred-Wegener-Institute) in April 2018. Sampling was performed using a microplastic net (mesh size: 300 µm), followed by filtration in the laboratory over a 500 µm stainless steel sieve. Putative MP items in the size range 500-5000 µm were analysed by means of Attenuated Total Reflection - FTIR in order to determine the underlying synthetic polymer. Dominant polymer type in the L-MP sample fraction was polyethylene. Concentrations ranged between 1 × 10⁻² m⁻³ and 9.8 × 10⁻¹ m⁻³. The highest MP concentration was measured upstream the Weser Weir.
اظهر المزيد [+] اقل [-]Screening ecological risk of pesticides and emerging contaminants under data limited conditions – Case study modeling urban and agricultural watersheds with OrganoFate النص الكامل
2021
Parker, Nicol | Keller, Arturo A.
The increasing number of chemicals used by society requires accessible, easy to implement tools to perform screening-level ecological risk assessments. However, field data to calibrate and validate screening tools is challenging to obtain for many watersheds. Thus, the evaluation must be done under data limited conditions. Here we employ a fate and transport model, OrganoFate, to predict environmental concentrations of contaminants of emerging concern (CECs) as well as a number of pesticides. CECs evaluated include antibacterial compounds sulfamethoxazole and triclocarban and a flame-retardant tris(1,3-dichloro-2-propyl)phosphate (TDCPP). We also evaluated widely used pesticides chlorpyrifos, bifenthrin and esfenvalerate. We predict concentrations of the contaminants in high-risk watersheds which were dominated by either urban or agricultural development and have small aquatic compartments. Screening-level predictions were in good agreement with observed concentrations in surface water and sediment. Maximum predicted concentrations were close to the highest observed concentrations for CECs, only ~0.1 μg/L greater for sulfamethoxazole and triclocarban concentrations, and for TDCPP <5 μg/L higher. ChemFate was also employed to screen possible aquatic health impacts. Results demonstrated possible CEC aquatic health risk for TDCPP and triclocarban (risk quotients of 0.9 and 1.1 respectively). For pesticides, exceedance of effect (EC50) and lethal (LC50) endpoints was predicted for various taxonomic groups which include aquatic invertebrates, fish, amphibians, and benthic organisms.
اظهر المزيد [+] اقل [-]A systematic review of the leaf traits considered to contribute to removal of airborne particulate matter pollution in urban areas النص الكامل
2021
Corada, Karina | Woodward, Huw | Alaraj, Hiba | Collins, C Matilda | de Nazelle, Audrey
Global urban planning has promoted green infrastructure (GI) such as street trees, shrubs or other greenspace in order to mitigate air pollution. Although considerable attention has been paid to understanding particulate matter (PM) deposition on GI, there has been little focus on identifying which leaf traits might maximise airborne PM removal. This paper examines existing literature to synthesize the state of knowledge on leaf traits most relevant to PM removal. We systematically reviewed measurement studies that evaluated particulate matter accumulated on leaves on street trees, shrubs green roofs, and green walls, for a variety of leaf traits. Our final selection included 62 papers, most from field studies and a handful from wind tunnel studies. The following were variously promoted as useful traits: coniferous needle leaves; small, rough and textured broadleaves; lanceolate and ovate shapes; waxy coatings, and high-density trichomes. Consideration of these leaf traits, many of which are also associated with drought tolerance, may help to maximise PM capture. Although effective leaf traits were identified, there is no strong or consistent evidence to identify which is the most influential leaf trait in capturing PM. The diversity in sampling methods, wide comparison groups and lack of background PM concentration measures in many studies limited our ability to synthesize results. We found that several ancillary factors contribute to variations in the accumulation of PM on leaves, thus cannot recommend that selection of urban planting species be based primarily on leaf traits. Further research into the vegetation structural features and standardization of the method to measure PM on leaves is needed.
اظهر المزيد [+] اقل [-]A toxicity pathway-oriented approach to develop adverse outcome pathway: AHR activation as a case study النص الكامل
2021
Jin, Yuan | Feng, Meiyao | Ma, Wanli | Wei, Yanhong | Qi, Guangshuai | Luo, Jiao | Xu, Lin | Li, Xinmei | Li, Chuanhai | Wang, Ying | Li, Daochuan | Chen, Jing | Zhao, Yanjie | Hou, Yufei | Zhao, Qianwen | Jiang, Lidan | Xie, Mengyue | Zheng, Yuxin | Yu, Dianke
With numerous new chemicals introduced into the environment everyday, identification of their potential hazards to the environment and human health is a considerable challenge. Developing adverse outcome pathway (AOP) framework is promising in helping to achieve this goal as it can bring In Vitro testing into toxicity measurement and understanding. To explore the toxic mechanism underlying environmental chemicals via the AOP approach, an integration of adequate experimental data with systems biology understanding is preferred. Here, we describe a novel method to develop reliable and sensible AOPs that relies on chemical-gene interactions, toxicity pathways, molecular regulations, phenotypes, and outcomes information obtained from comparative toxicogenomics database (CTD) and Ingenuity Pathway Analysis (IPA). Using Benzo(a)pyrene (BaP), a highly studied chemical as a stressor, we identified the pivotal IPA toxicity pathways, the molecular initiating event (MIE), and candidate key events (KEs) to structure AOPs in the liver and lung, respectively. Further, we used the corresponding CTD information of multiple typical AHR-ligands, including 2,3,7,8-tetrachlorodibenzoparadioxin (TCDD), valproic acid, quercetin, and particulate matter, to validate our AOP networks. Our approach is likely to speed up AOP development as providing a time- and cost-efficient way to collect all fragmented bioinformation in published studies. It also facilitates a better understanding of the toxic mechanism of environmental chemicals, and potentially brings new insights into the screening of critical paths in the AOP network.
اظهر المزيد [+] اقل [-]Bioavailability for organic chemical bioaccumulation follows the power law النص الكامل
2021
Wang, Rubing | Li, Xinmeng | Chui, Kawai | Hu, Canyang | Wang, Zhuhua | Chen, Jingwen | Cai, Xiyun
Despite the importance of bioavailability for organic chemical bioaccumulation by terrestrial and benthic invertebrates, the principles of bioavailability for organic chemical bioaccumulation remain poorly understood. Here we use large-scale databases with contrasting geographic, compound and organism coverage (from 925 sites, 446 compounds and 184 invertebrate species), and report that bioavailability for organic chemical bioaccumulation follows the power law. It represents that the internal concentration of organic chemicals is the composite power function of the lipid fraction of invertebrates, bulk site concentration of compounds, and organic carbon content of soils/sediments. This law directly links environmental exposures and body burdens of organic chemicals in contaminated sites, and provides a method for enabling case-specific risk assessments of a vast number of organic chemicals and contaminated sites. Our findings may pave the way for translating bioavailability knowledge into risk-oriented regulation of organic chemicals and contaminated sites.
اظهر المزيد [+] اقل [-]Consumption of field-realistic doses of a widely used mito-toxic fungicide reduces thorax mass but does not negatively impact flight capacities of the honey bee (Apis mellifera) النص الكامل
2021
Glass, Jordan R. | Fisher, Adrian | Fewell, Jennifer H. | DeGrandi-Hoffman, Gloria | Ozturk, Cahit | Harrison, Jon F.
Commercial beekeepers in many locations are experiencing increased annual colony losses of honey bees (Apis mellifera), but the causes, including the role of agrochemicals in colony losses, remain unclear. In this study, we investigated the effects of chronic consumption of pollen containing a widely-used fungicide (Pristine®), known to inhibit bee mitochondria in vitro, which has recently been shown to reduce honey bee worker lifespan when field-colonies are provided with pollen containing field-realistic levels of Pristine®. We fed field colonies pollen with a field-realistic concentration of Pristine® (2.3 ppm) and a concentration two orders of magnitude higher (230 ppm). To challenge flight behavior and elicit near-maximal metabolic rate, we measured flight quality and metabolic rates of bees in two lower-than-normal air densities. Chronic consumption of 230 but not 2.3 ppm Pristine® reduced maximal flight performance and metabolic rates, suggesting that the observed decrease in lifespans of workers reared on field-realistic doses of Pristine®-laced pollen is not due to inhibition of flight muscle mitochondria. However, consumption of either the 230 or 2.3 ppm dose reduced thorax mass (but not body mass), providing the first evidence of morphological effects of Pristine®, and supporting the hypothesis that Pristine® reduces forager longevity by negatively impacting digestive or nutritional processes.
اظهر المزيد [+] اقل [-]No negative effects of boat sound playbacks on olfactory-mediated food finding behaviour of shore crabs in a T-maze النص الكامل
2021
Hubert, J. | van Bemmelen, J.J. | Slabbekoorn, H.
Anthropogenic noise underwater is increasingly recognized as a pollutant for marine ecology, as marine life often relies on sound for orientation and communication. However, noise may not only interfere with processes mediated through sound, but also have effects across sensory modalities. To understand the mechanisms of the impact of anthropogenic sound to its full extent, we also need to study cross-sensory interference. To study this, we examined the effect of boat sound playbacks on olfactory-mediated food finding behaviour of shore crabs. We utilized opaque T-mazes with a consistent water flow from both ends towards the starting zone, while one end contained a dead food item. In this way, there were no visual or auditory cues and crabs could only find the food based on olfaction. We did not find an overall effect of boat sound on food finding success, foraging duration or walking distance. However, after excluding deviant data from one out of the six different boat stimuli, we found that crabs were faster to reach the food during boat sound playbacks. These results, with and without the deviant data, seem to contradict an earlier field study in which fewer crabs aggregated around a food source during elevated noise levels. We hypothesise that this difference could be explained by a difference in hunger level, with the current T-maze crabs being hungrier than the free-ranging crabs. Hunger level may affect the motivation to find food and the decision to avoid or take risks, but further research is needed to test this. In conclusion, we did not find unequivocal evidence for a negative impact of boat sound on the processing or use of olfactory cues. Nevertheless, the distinct pattern warrants follow up and calls for even larger replicate samples of acoustic stimuli for noise exposure experiments.
اظهر المزيد [+] اقل [-]Responses of fine particulate matter and ozone to local emission reductions in the Sichuan Basin, southwestern China النص الكامل
2021
Qiao, Xue | Liu, Lu | Yang, Chun | Yuan, Yanping | Zhang, Mengyuan | Guo, Hao | Tang, Ya | Ying, Qi | Zhu, Shengqiang | Zhang, Hongliang
The Sichuan Basin (SCB) in southwestern China is largely affected by air pollution. Understanding the responses of air pollutant concentrations to emission changes is critical for designing and evaluating effective control strategies. Thus, this study used the Community Multi-scale Air Quality (CMAQ) model to simulate PM₂.₅ (i.e., particulate matter with an aerodynamic diameter ≤ 2.5 μm) in winter (January 2015) and ozone (O₃) in summer (July 2015) under nine emission reduction scenarios. For each scenario, the anthropogenic emissions of each air pollutant in each SCB grid cell were reduced by the same percentage, ranging from 10% to 90%. We found that approximately 30–70% emission reductions are required to reduce the January mean PM₂.₅ concentrations in all the SCB urban centers to a value that is less than the Chinese standard for daily mean PM₂.₅ (24-h PM₂.₅: 75 μg m⁻³). However, the January mean PM₂.₅ concentrations under 90% emission reduction still exceeded the World Health Organization (WHO) guideline (25 μg m⁻³) in 16 SCB urban centers. Moreover, reducing both SCB and non-SCB emissions were critical for achieving the PM₂.₅ level recommended by WHO. An 80% emission reduction was required to prevent the occurrence of 8-h O₃ (i.e., daily maximum 8-h mean O₃) non-attainment days in all SCB urban centers. Under 90% emission reduction, July mean 8-h O₃ concentrations still exceeded the WHO guideline of 47 ppb in approximately 35% of the SCB areas. In conclusion, this study suggests that (1) compared with the governmental emission reduction targets for 2015–2020 (2–27%), more significant emission reductions are required to meet the Chinese and WHO pollution standards; and (2) both SCB and non-SCB emissions must significantly reduce to achieve the desired pollution targets.
اظهر المزيد [+] اقل [-]Polybrominated diphenyl ethers (PBDEs) concentrations in soil and plants around municipal dumpsites in Abuja, Nigeria النص الكامل
2021
Oloruntoba, K. D. | Sindiku, Omotayo | Osibanjo, Oladele | Herold, Christine | Weber, Roland
Polybrominated diphenyl ethers (PBDEs) are listed as persistent organic pollutants (POPs) in the Stockholm Convention. It has been established that PBDEs may be released into the environment during improper handling and disposal of e-waste and other products containing PBDEs that is prevalent in developing countries. This research work assessed the status of PBDE contamination at dumpsites in Nigeria. Soil and edible plant samples were collected from the dumpsites and control sites for analysis. The concentrations of ∑₇PBDE in the topsoils around the dumpsites at 0–15 cm depth ranged from 112 to 366 ng/g dry weight (dw) while that of the topsoil of the control site 500 m from the dumpsite ranged from 26.8 to 39.7 ng/g dw. These high concentrations stem likely from open burning of waste including electronic waste on the landfills. Plant samples (bentgrass, spinach, tomatoes, pumpkin and sweet potatoes) around the dumpsites were found to be contaminated by PBDEs with levels ranging from 25.0 to 60.5 ng/g dw in plant roots and from 8.45 to 32.2 ng/g dw in plant shoots for ∑₇PBDE. This suggests that consumption of vegetables by humans and ingestion of contaminated soils and feed by chickens and cows can transfer PBDEs into the human food chain around the dumpsites. The comparison of PBDE levels in soils and the PBDE levels in chicken eggs from the former study indicate that PBDE levels in the soils are sufficient to explain the levels in the chicken eggs with a reasonable carry-over rate for PBDEs of 0.28 on average. The PBDE contamination in the soil was sufficient to result in a relevant exposure of humans via accumulation in eggs. The study shows that a better management of end-of-life products containing PBDEs is needed to reduce PBDE exposure risk in Africa.
اظهر المزيد [+] اقل [-]Polycyclic aromatic hydrocarbons in sedimentary cores of Tibetan Plateau: Influence of global warming on cold trapping النص الكامل
2021
Wang, An-Ting | Li, Jun | Wang, Qi | Fang, Bin | Yuan, Guo-Li | Duan, Xu-Chuan
Cold condensation is an important pathway for polycyclic aromatic hydrocarbons (PAHs) depositing at remote alpine lakes after long-range atmospheric transportation. However, in the context of global warming, the obvious temperature rise in the Tibetan Plateau (TP) might have an impact on the air deposition of PAHs by controlling the extent of cold condensation. To investigate the influence of rising temperatures on the atmospheric deposition of PAHs, two dated sedimentary cores from Pumoyum Co Lake (PC) and Selin Co Lake (SC) were collected, respectively and concentrations of 16 individual PAHs were measured. In both PC and SC, the total concentration of 16 PAHs presented relatively lower levels in four historical periods of “hot anomaly” including 1973–1975, 1988–1989, 1998–1999, and 2006–2007. This indicated that the hot temperatures might restrict the atmospheric deposition of PAHs. Besides, the results of the principal component analysis did discriminate those “hot anomalies”. As the temperature kept increasing in TP, for low molecular weight PAHs and high molecular weight PAHs, the influence of rising temperatures on the cold condensation was different. Therefore, it was identified that the effect of global warming on the environmental fate of POPs cannot be neglected, especially in alpine regions like TP.
اظهر المزيد [+] اقل [-]