خيارات البحث
النتائج 721 - 730 من 796
What determines selection and abandonment of a foraging patch by wild giant pandas (Ailuropoda melanoleuca) in winter? النص الكامل
2009
Zhang, Zejun | Zhan, Xiangjiang | Yan, Li | Li, Ming | Hu, Jinchu | Wei, Fuwen
Background, aim, and scope Foraging patches can be described as a nested hierarchy of aggregated resources, implying that study of foraging by wild animals should be directed across different spatial scales. However, almost all previous research on habitat selection by the giant panda has concentrated upon one scale. In this research, we carried out a field study to understand foraging patch selection by giant pandas in winter at both microhabitat and feeding site scales and, for the first time, attempted to understand how long it would stay at the feeding sites before moving on. Materials and methods The field survey was conducted from November 2002 to March 2003 at Fengtongzhai Nature Reserve (102°48'-103°00' E, 30°19'-30°47' N), Baoxing County of Sichuan Province, China, to collect data in both microhabitat and control plots. The microhabitat plots were located by fresh feces or foraging traces left by giant pandas, and the control plots were established to reflect the environment. Within each microhabitat plot, one 1 x 1 m² plot was centralized at the center of each feeding site, in which numbers of old bamboos and old shoots, including eaten and uneaten, were counted, respectively. Results The results showed that winter microhabitats selected by this species were characteristic of gentle slopes and high old-shoot proportions and that the latter was even higher at feeding sites. Two selection processes, namely, from the environment to microhabitats and from the latter to feeding sites, were found during this species' foraging patch utilization. Giant pandas preferred to eat old shoots to old bamboo at feeding sites in winter and did not leave unless old-shoot density fell to lower than the average in the environment. Discussion Both microhabitats and feeding sites selected by giant pandas were characteristic of high old-shoot density, indicating that the preferred food item had a significant influence upon its foraging patch selection. The preference for gentle slopes by giant pandas was presumed to save energy in movement or reflect the need to sit and free its fore-limbs to grasp bamboo culms when feeding but also seemed to be correlated with an easier access to old shoots. The utilization of old shoots at feeding sites was assumed to help maximize energy or nutrient intake during their foraging. Conclusions The difference between microhabitat plots and control plots and between microhabitats and feeding sites uncovered a continuous selection process from the environment via microhabitats to feeding sites. The utilization of old shoots at feeding sites was parallel to the marginal value theorem. The selection and abandonment of foraging patches by giant pandas was an optimal behavioral strategy adapted to their peculiar food with high cellulose and low protein. Recommendations and perspectives Our results uncovered the importance of multiple scales in habitat selection research. To further understand the process of habitat selection, future research should pay more attention to resolve the question of how to locate foraging patches under dense bamboo forests by the giant panda, which was traditionally considered to have poor eyesight, although our research has answered what type of habitats the giant panda prefers and when to leave.
اظهر المزيد [+] اقل [-]Implications of metal accumulation mechanisms to phytoremediation النص الكامل
2009
Memon, Abdul R | Schröder, Peter
Background, aim, and scope Trace elements (heavy metals and metalloids) are important environmental pollutants, and many of them are toxic even at very low concentrations. Pollution of the biosphere with trace elements has accelerated dramatically since the Industrial Revolution. Primary sources are the burning of fossil fuels, mining and smelting of metalliferous ores, municipal wastes, agrochemicals, and sewage. In addition, natural mineral deposits containing particularly large quantities of heavy metals are found in many regions. These areas often support characteristic plant species thriving in metal-enriched environments. Whereas many species avoid the uptake of heavy metals from these soils, some of them can accumulate significantly high concentrations of toxic metals, to levels which by far exceed the soil levels. The natural phenomenon of heavy metal tolerance has enhanced the interest of plant ecologists, plant physiologists, and plant biologists to investigate the physiology and genetics of metal tolerance in specialized hyperaccumulator plants such as Arabidopsis halleri and Thlaspi caerulescens. In this review, we describe recent advances in understanding the genetic and molecular basis of metal tolerance in plants with special reference to transcriptomics of heavy metal accumulator plants and the identification of functional genes implied in tolerance and detoxification. Results Plants are susceptible to heavy metal toxicity and respond to avoid detrimental effects in a variety of different ways. The toxic dose depends on the type of ion, ion concentration, plant species, and stage of plant growth. Tolerance to metals is based on multiple mechanisms such as cell wall binding, active transport of ions into the vacuole, and formation of complexes with organic acids or peptides. One of the most important mechanisms for metal detoxification in plants appears to be chelation of metals by low-molecular-weight proteins such as metallothioneins and peptide ligands, the phytochelatins. For example, glutathione (GSH), a precursor of phytochelatin synthesis, plays a key role not only in metal detoxification but also in protecting plant cells from other environmental stresses including intrinsic oxidative stress reactions. In the last decade, tremendous developments in molecular biology and success of genomics have highly encouraged studies in molecular genetics, mainly transcriptomics, to identify functional genes implied in metal tolerance in plants, largely belonging to the metal homeostasis network. Discussion Analyzing the genetics of metal accumulation in these accumulator plants has been greatly enhanced through the wealth of tools and the resources developed for the study of the model plant Arabidopsis thaliana such as transcript profiling platforms, protein and metabolite profiling, tools depending on RNA interference (RNAi), and collections of insertion line mutants. To understand the genetics of metal accumulation and adaptation, the vast arsenal of resources developed in A. thaliana could be extended to one of its closest relatives that display the highest level of adaptation to high metal environments such as A. halleri and T. caerulescens. Conclusions This review paper deals with the mechanisms of heavy metal accumulation and tolerance in plants. Detailed information has been provided for metal transporters, metal chelation, and oxidative stress in metal-tolerant plants. Advances in phytoremediation technologies and the importance of metal accumulator plants and strategies for exploring these immense and valuable genetic and biological resources for phytoremediation are discussed. Recommendations and perspectives A number of species within the Brassicaceae family have been identified as metal accumulators. To understand fully the genetics of metal accumulation, the vast genetic resources developed in A. thaliana must be extended to other metal accumulator species that display traits absent in this model species. A. thaliana microarray chips could be used to identify differentially expressed genes in metal accumulator plants in Brassicaceae. The integration of resources obtained from model and wild species of the Brassicaceae family will be of utmost importance, bringing most of the diverse fields of plant biology together such as functional genomics, population genetics, phylogenetics, and ecology. Further development of phytoremediation requires an integrated multidisciplinary research effort that combines plant biology, genetic engineering, soil chemistry, soil microbiology, as well as agricultural and environmental engineering.
اظهر المزيد [+] اقل [-]Adsorption of lambda-cyhalothrin and cypermethrin on two typical Chinese soils as affected by copper النص الكامل
2009
Liu, Jun | Lü, Xiaomeng | Xie, Jimin | Chu, Yafei | Sun, Cheng | Wang, Qian
Background, aim, and scope Pesticides and heavy metals pollution in soil environment has become a serious problem in many countries including China. Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid (Pys) insecticides have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils. However, few studies focused on the interaction of Pys and heavy metals in the soil environment. Our previous studies had indicated the combined effect of cypermethrin (CPM) and Cu on soil catalase activity. Also, we had suggested that the addition of Cu could catalyze photo-degradation of CPM and lambda-cyhalothrin (λ-CHT) in aqueous solution and restrain their degradation in soil. To better understand the potential influence of Cu on the fate of Pys in the soil environment, the aim of the present work was to examine the effect of Cu on the adsorption of λ-CHT and CPM on two typical Chinese soils with different soil characteristics, which was one of the key processes controlling the fate of Pys, and to provide more information about the potential ecological risk of chemicals on the soil ecosystem. Fourier transform infrared and point charges analysis using the MOPAC program of the Gaussian system were also used to reveal the probable adsorption mechanism of λ-CHT and CPM on soils. Materials and methods Two vineyard soils with different properties were chosen as experimental samples. They were sampled from 0 to 10 cm, dried, and sieved to 2 mm. Each soil was spiked with copper sulfate solution to obtain the following total soil Cu concentrations: 100, 200, 400, 800, and 1,600 mg·kg⁻¹. The treated soils were incubated for 2 weeks and then dried at 20°C. For each soil sample and at each soil Cu concentration, the adsorption of λ-CHT and CPM was measured using a batch equilibrium method. The concentration of λ-CHT was determined by HPLC, and the amount of λ-CHT and CPM adsorbed by the soil sample at equilibrium was determined by the difference between the initial and equilibrium concentrations in solution corrected by the blank adsorption measurement. Results Without the addition of Cu, the adsorption of λ-CHT and CPM on Black soil is greater than that on Red soil, while the adsorption of λ-CHT on both soils is significantly stronger than that of CPM. As the soil Cu concentration increased from 19 (or 18; background) to 1,600 mg·kg⁻¹, the adsorption coefficient (K d) of λ-CHT decreased from 12.2 to 5.9 L·kg⁻¹ for Red soil, and from 26.1 to 16.8 L·kg⁻¹ for Black soil, whereas the CPM adsorption coefficient in both soils decreased nearly by 100% (K d decreased from 9.4 to 0.2 L·kg⁻¹ for Red soil and from 16.2 to 0.5 L·kg⁻¹ for Black soil). Discussion Pys adsorption is a surface phenomenon which depends on the surface area and the organic matter content. Thus, the Black soil, having higher organic matter and greater surface area than that of the Red soil, show greater adsorption affinity to λ-CHT and CPM. In our study, the different adsorption affinity of the two Pys was obtained, which was probably attributed to differences with respect to their physical-chemical properties. Further comparison upon the two Pys was conducted. The point charges of halogen atoms in the λ-CHT and CPM were calculated, the differences of which probably lead to the fact that λ-CHT has a stronger binding capacity to soils than CPM. Also, FTIR spectra show that competitive adsorption occurs between CPM and Cu for the same adsorption sites, which is responsible for the obtained suppression of CPM adsorption affected by Cu. Conclusions Lambda-cyhalothrin shows a significantly stronger adsorption than cypermethrin on both soils. This phenomenon may be due to several reasons: (1) λ-CHT has lower solubility and a higher octanol-water partition coefficient value than CPM; (2) λ-CHT consists of specific isomers, whereas CPM is mixtures of eight different isomers; (3) the chlorine and fluorine atoms in the λ-CHT have a negative point charge, whereas the chlorine atoms in the CPM have a positive point charge. As the soil Cu concentrations increased from 19 (or 18) mg·kg⁻¹ to 1,600 mg·kg⁻¹, the adsorption coefficient of λ-CHT and CPM decreased on both soils. This is mainly due to a competition between Cu and Pys for occupying the adsorption sites on soils. The information from this study have important implications for vineyard and orchard soils, which often contain elevated levels of Cu and Pys. These results are also useful in assessing the environmental fate and health effect of λ-CHT and CPM. Recommendations and perspectives It is important for environmental scientists and engineers to get a better understanding of soil-metal-organic contaminant interactions. However, pesticide adsorption involves complex processes, and shortcomings in understanding them still restrict the ability to predict the fate and behavior of pesticide. Therefore, considerable research should be carried out to understand the mechanism of interaction between Pys and heavy metal on soils clearly.
اظهر المزيد [+] اقل [-]Influence of thermally activated paper sludge on the behaviour of blended cements subjected to saline and non-saline environments النص الكامل
2009
García, Rosario | Rubio, Virginia | Vegas, Iñigo | Frías Rojas, Moisés
Background, aim and scope One of the problems to affect Portland cement matrices is low resistance to aggressive agents, due principally to the presence of a high content of portlandite in the hydrated cements. Pozzolanic materials have played an important role in the improving the durability of cement-based materials for decades. This work studies the behaviour of cement mortar matrices blended with 10% calcined paper sludge (source for metakaolinite) and exposed to different environmental conditions (saline and non-saline environments) after 6 and 12 months of exposure. Materials and methods Two cements were studied: an ordinary Portland cement (CEM 1, 42.5R), acting as reference cement, and a blended cement formulated by mixing 90% (by mass) of CEM 1, 42.5R with 10% (by mass) of paper sludge calcined at 700°C for 2 h. The specimens were exposed 1 year to saline and non-saline environments. All the mineralogy samples were studied through X-ray diffraction and scanning electron microscopy (SEM) equipped with an energy dispersive X-ray analyser. The in-depth study on ionic mobility was performed on samples subjected to natural exposure (coast and tableland) for 6 and 12 months. Results Portland cement was composed of quartz, calcite, calcium hydroxide and tobermorite gels. The pozzolanic cement (10% calcined paper sludge) is of the same composition but a high calcite concentration and barium carbonate. SEM analysis from coastline show deposits of variable composition. The deposits are identified on the surface of different mineral components. The minerals from tableland are much fractured, i.e. calcite and feldspars. Inside the fractures, the deposits and the ions are located and trapped superficially. Discussion SEM analysis of control cement Portland and 10% calcined paper sludge shows deposits on quartz and calcite with a very high concentration of Pb, Zn, Cl and barium sulphate. A very porous aspect is due to the presence of the different aggregate types. This porous configuration permits retention of the ion environment. The pozzolanic cement in environments subject to the saline mist favours the retention and transport of ions observed. Something similar also happens with the increase in exposure to outdoor weather. Non-saline samples show temperature changes (ice or thaw cycles). Barium retention is kept on the surface in fracture lines by the gelification processes. In general, it may be inferred that an increase in exposure time increases the diffusion of ions towards test piece interiors. The chemical composition profiles show that the ions present different penetration speeds. Conclusions The results indicate the better vulnerability of pozzolanic cements from calcined paper sludge in saline and non-saline environments. The cements with a 10% addition of calcined paper sludge favour retention and transport of ion has been observed. Recommendations and perspectives Today, projects are centred on a new recycling line for industrial waste of this kind, with special attention on its incorporation in cement manufacture as a pozzolanic material, setting the most appropriate activation conditions of the mineralogical compound in this waste (kaolinite and metakaolinite) and taking them as a starting point for this project. The use of pozzolanic cement with 10% addition of calcined paper sludge is a system which favours ionic retention.
اظهر المزيد [+] اقل [-]Seasonal differences in mercury accumulation in Trichiurus lepturus (Cutlassfish) in relation to length and weight in a Northeast Brazilian estuary النص الكامل
2009
Costa, Monica Ferreira | Barbosa, Scheyla C. T. | Barletta, Mario | Dantas, David V. | Kehrig, Helena A. | Seixas, Tércia G. | Malm, Olaf
Background, aim, and scope At tropical latitudes, and especially on the semi-arid coasts of the Brazilian Northeast, the rainfall regime governs the water quality of estuaries due to the pronounced difference between the rainy and dry seasons. These changes may be responsible for seasonal changes in bioavailability of mercury (Hg) and other pollutants to the estuarine and coastal biota. Mercury bioaccumulates along estuarine-marine food chains usually result in higher concentrations in tissues of top predators and posing a risk to both marine mammals and humans alike. The Goiana River Estuary (7.5° S) is a typical estuary of the semi-arid tropical regions and supports traditional communities with fisheries (mollusks, fish, and crustacean). It is also responsible for an important part of the biological production of the adjacent coastal waters. Materials and methods Trichiurus lepturus (Actinopterygii: Perciformes) is a pscivorous marine straggler. Fish from this species (n = 104) were captured in a trapping barrier used by the local traditional population and using an otter trawl net along the main channel of the low estuary during two dry seasons (D1 = November, December 2005, January 2006; D2 = November, December 2006, January 2007) and the end of a rainy season (R = August, September, October 2006). Fish muscle samples were preserved cold and then freeze-dried prior to analysis of its total mercury (Hg-T) contents. Total mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. Results The studied individuals (n = 104) were sub-adult (30-70 cm, 71 ind.) and adult fish (>70 cm, 33 ind.). Weight (W) (204.1 ± 97.9 g, total biomass = 21,229.7 g) and total length (TL) (63.1 ± 10.1 cm, range 29.5-89.0 cm) presented a significant (p < 0.05) correlation. Two-way ANOVA (n = 81) showed that TL and W had significant differences (p < 0.05) among seasons, being higher in D1 than in D2 and R, respectively. Moreover, season vs. month interaction were detected for the variables length and weight. For the variable weight was detected significant difference for the factor month (p < 0.05). It suggests that the fish enter the estuary at the end of the rainy season and increase in length and weight during the time they spend in the estuary. Fish from this estuary are shown to be fit for human consumption (125.3 ± 61.9 μgHg-T kg⁻¹ w.wt.; n = 104). Fish mercury contents increased with size and weight. Correlations between TL and Hg-T (r = 0.37286) and between W and Hg-T (r = 0.38212) were significant (p < 0.05). Dryer months showed higher mercury concentrations in fish (D1 773.4 ± 207.5 μgHg-T kg⁻¹ d.wt., n = 27; D2 370.1 ± 78.8 μgHg-T kg⁻¹ d.wt., n = 27; R 331.2 ± 138.5 μgHg-T kg⁻¹ d.wt., n = 27). The variable mercury concentration showed differences in relation to the factor season (p < 0.05), where fish captured during the first dry season showed the highest concentration of mercury. The correlation between Hg-T and rainfall (Rf) showed a negative correlation (r = -0.56; p < 0.05). Discussion The main likely source of mercury to this estuary is diffuse continental run off, including urban and industrial effluents. Since concentration of mercury in fish tissue is negatively correlated to rainfall, but positively correlated with fish length and weight, it suggests that fish growth in this estuary results in mercury uptake and concentration on the fish tissue. In the dry season of 2005-2006, when rainfall remained below the historic average, fish bioaccumulated significantly more mercury than in the dry season 2006-2007, when rainfall was within the predictable historic average. It is suggested that less rainfall, and consequently less particulate matter and less primary production in the estuary, make mercury more available to the higher levels of the estuarine food chain. In the case of higher rainfall, when river flow increases and water quality in the estuary is reduced, mercury probably is quickly exported associated to the particulate matter to the adjacent coastal waters where it then disperses. This species is a potential routine bioindicator for mercury contamination of the biota, but so far was used only with a limited number of individuals and contexts. Conclusions Fish from the Goiana River estuary can still be safely consumed by the local population. However, any further contamination of this resource might lead to total mercury levels above the recommended limits for pregnant women and small children. The proposed heavy dependency of total mercury levels in fish on water quality indicates that land use and water quality standards must be more closely watched in order to guarantee that best possible practices are in place to prevent bioaccumulation of mercury and its transfer along the food chain. Human interventions and climatic events which affect river water flow are also playing a role in the mercury cycle at tropical semi-arid estuaries. Recommendations and perspectives T. lepturus is largely consumed by coastal populations of tropical and sub-tropical countries all over the world. It is also consumed by a number of marine mammals over which we have a strong conservation interest. This species is also a link among different ecosystems along the estuarine ecocline. Therefore, knowledge of its degree of contamination might contribute to public health issues as well as marine conservation actions. Studies on mercury and other contaminants using this species as bioindicator (cosmopolitan, readily available) could help elucidating mechanisms through which pollutants are being transferred not only through the food chain, but also from estuarine-coastal-open waters. In addition, using the same species in marine pollution studies, especially as part of a mosaic of species, allows for wide range comparisons of marine food chain contamination.
اظهر المزيد [+] اقل [-]Phytoremediation of contaminated soils and groundwater: lessons from the field النص الكامل
2009
Vangronsveld, Jaco | Herzig, Rolf | Weyens, Nele | Boulet, Jana | Adriaensen, Kristin | Ruttens, Ann | Thewys, Theo | Vassilev, Andon | Meers, Erik | Nehnevajova, Erika | van der Lelie, Daniel | Mench, Michel
Background, aim, and scope The use of plants and associated microorganisms to remove, contain, inactivate, or degrade harmful environmental contaminants (generally termed phytoremediation) and to revitalize contaminated sites is gaining more and more attention. In this review, prerequisites for a successful remediation will be discussed. The performance of phytoremediation as an environmental remediation technology indeed depends on several factors including the extent of soil contamination, the availability and accessibility of contaminants for rhizosphere microorganisms and uptake into roots (bioavailability), and the ability of the plant and its associated microorganisms to intercept, absorb, accumulate, and/or degrade the contaminants. The main aim is to provide an overview of existing field experience in Europe concerning the use of plants and their associated microorganisms whether or not combined with amendments for the revitalization or remediation of contaminated soils and undeep groundwater. Contaminations with trace elements (except radionuclides) and organics will be considered. Because remediation with transgenic organisms is largely untested in the field, this topic is not covered in this review. Brief attention will be paid to the economical aspects, use, and processing of the biomass. Conclusions and perspectives It is clear that in spite of a growing public and commercial interest and the success of several pilot studies and field scale applications more fundamental research still is needed to better exploit the metabolic diversity of the plants themselves, but also to better understand the complex interactions between contaminants, soil, plant roots, and microorganisms (bacteria and mycorrhiza) in the rhizosphere. Further, more data are still needed to quantify the underlying economics, as a support for public acceptance and last but not least to convince policy makers and stakeholders (who are not very familiar with such techniques).
اظهر المزيد [+] اقل [-]Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety النص الكامل
2009
Mench, Michel | Schwitzguébel, Jean-Paul | Schroeder, Peter | Bert, Valérie | Gawronski, Stanislaw | Gupta, Satish
Purpose The term “phytotechnologies” refers to the application of science and engineering to provide solutions involving plants, including phytoremediation options using plants and associated microbes to remediate environmental compartments contaminated by trace elements (TE) and organic xenobiotics (OX). An extended knowledge of the uptake, translocation, storage, and detoxification mechanisms in plants, of the interactions with microorganisms, and of the use of “omic” technologies (functional genomics, proteomics, and metabolomics), combined with genetic analysis and plant improvement, is essential to understand the fate of contaminants in plants and food, nonfood and technical crops. The integration of physicochemical and biological understanding allows the optimization of these properties of plants, making phytotechnologies more economically and socially attractive, decreasing the level and transfer of contaminants along the food chain and augmenting the content of essential minerals in food crops. This review will disseminate experience gained between 2004 and 2009 by three working groups of COST Action 859 on the uptake, detoxification, and sequestration of pollutants by plants and consequences for food safety. Gaps between scientific approaches and lack of understanding are examined to suggest further research and to clarify the current state-of-the-art for potential end-users of such green options. Conclusion and perspectives Phytotechnologies potentially offer efficient and environmentally friendly solutions for cleanup of contaminated soil and water, improvement of food safety, carbon sequestration, and development of renewable energy sources, all of which contribute to sustainable land use management. Information has been gained at more realistic exposure levels mainly on Cd, Zn, Ni, As, polycyclic aromatic hydrocarbons, and herbicides with less on other contaminants. A main goal is a better understanding, at the physiological, biochemical, and molecular levels, of mechanisms and their regulation related to uptake-exclusion, apoplastic barriers, xylem loading, efflux-influx of contaminants, root-to-shoot transfer, concentration and chemical speciation in xylem/phloem, storage, detoxification, and stress tolerance for plants and associated microbes exposed to contaminants (TE and OX). All remain insufficiently understood especially in the case of multiple-element and mixed-mode pollution. Research must extend from model species to plants of economic importance and include interactions between plants and microorganisms. It remains a major challenge to create, develop, and scale up phytotechnologies to market level and to successfully deploy these to ameliorate the environment and human health.
اظهر المزيد [+] اقل [-]Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts for current residue النص الكامل
2009
Cabidoche, Yves-Marie | Achard, Raphaël | Cattan, Philippe | Clermont-Dauphin, Claridge | Massat, Félix | Sansoulet, Julie
Chlordecone was applied between 1972 and 1993 in banana fields of the French West Indies. This resulted in long-term pollution of soils and contamination of waters, aquatic biota, and crops. To assess pollution level and duration according to soil type, WISORCH, a leaching model based on first-order desorption kinetics, was developed and run. Its input parameters are soil organic carbon content (SOC) and SOC/water partitioning coefficient (Koc). It accounts for current chlordecone soil contents and drainage water concentrations. The model was valid for andosol, which indicates that neither physicochemical nor microbial degradation occurred. Dilution by previous deep tillages makes soil scrapping unrealistic.Lixiviation appeared the main way to reduce pollution. Besides the SOC and rainfall increases, Koc increased from nitisol to ferralsol and then andosol while lixiviation efficiency decreased. Consequently, pollution is bound to last for several decades for nitisol, centuries for ferralsol, and half a millennium for andosol.
اظهر المزيد [+] اقل [-]Use of geosynthetics as a substitute for leachate drainage layers in landfill cells | Utilisation de géosynthétiques en équivalence de drainage de lixiviats dans les installations de stockage de déchets النص الكامل
2009
Mandel, J. | Gisbert, T. | Oberti, O. | Arcadis | SITA DECTRA SAINT BRICE COURCELLES ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
National audience | Given the good performance of geosynthetic material for drainage, it seems interesting to use these products to replace part or all of the drainage layer commonly used in landfill cells (silicate materials). The calculation showed that the replacement of a granular layer of 0.50 m by a drainage geosynthetic product is not always as easy as it seems: the maximum water head legally acceptable decreases with the thickness of the studied equivalent solution, which limits its ability to flow. ARCADIS and SITA DECTRA present here a case study on the Romagne-sous-Montfaucon landfill site for which a hybrid (solid granular + geosynthetic) was called. | Compte tenu des bonnes performances des géosynthétiques de drainage, il semble intéressant d'utiliser ces produits pour remplacer tout ou partie du massif drainant généralement utilisé en fond de casier d'installations de stockage de déchets. Le calcul montre que le remplacement d'une couche granulaire de 0,50 m par un géosynthétique de drainage n'est pas toujours aussi aisé qu'il y paraît : la charge maximale réglementairement acceptable diminue avec l'épaisseur du dispositif équivalent considéré, ce qui limite sa capacité de débit. Arcadis et Sita Dectra présentent ici une étude de cas sur le site de Romagne-sous-Montfaucon pour lequel un dispositif hybride (massif granulaire + géosynthétique) a été préconisé.
اظهر المزيد [+] اقل [-]Geomembrane lining systems of mountain reservoirs: feedback and recommendations | Dispositifs d'étanchéité par géomembrane des retenues d'altitude : retour d'expérience et recommandations النص الكامل
2009
Girard, H. | Peyras, L. | Mériaux, P. | Degoutte, G. | Deroo, Luc | Lefranc, M. | Réseaux épuration et qualité des eaux (UR REBX) ; Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF) | Ouvrages hydrauliques et hydrologie (UR OHAX) ; Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF) | ISL | EDF (EDF)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]RIVAGE | National audience | The paper presents parts of the recent guide of recommendations "Mountain reservoirs". It makes a synthesis of a feedback on the behaviour and the pathology of geomembrane lining systems and gives the strong recommendations of the guide relative to these systems, in particular onto the structure support, the drainage inherent to the DEG and the covering structure. A general description of the guide ends the article. | L'article présente, à travers le récent guide de recommandations « Retenues d'altitude », la synthèse d'un retour d'expérience sur le comportement et la pathologie des dispositifs d'étanchéité par géomembrane (DEG) en altitude. Il donne les recommandations fortes du guide relatives à ces dispositifs, en particulier sur la structure support, le drainage inhérent au DEG et la structure de recouvrement. Un descriptif général du guide termine l'article.
اظهر المزيد [+] اقل [-]