خيارات البحث
النتائج 741 - 750 من 1,539
Fixed Bed Sorption of Phosphorus from Wastewater Using Iron Oxide-Based Media Derived from Acid Mine Drainage
2012
Sibrell, P. L. | Tucker, T. W.
Phosphorus (P) releases to the environment have been implicated in the eutrophication of important water bodies worldwide. Current technology for the removal of P from wastewaters consists of treatment with aluminum (Al) or iron (Fe) salts, but is expensive. The neutralization of acid mine drainage (AMD) generates sludge rich in Fe and Al oxides that has hitherto been considered a waste product, but these sludges could serve as an economical adsorption media for the removal of P from wastewaters. Therefore, we have evaluated an AMD-derived media as a sorbent for P in fixed bed sorption systems. The homogenous surface diffusion model (HSDM) was used to analyze fixed bed test data and to determine the value of related sorption parameters. The surface diffusion modulus Ed was found to be a useful predictor of sorption kinetics. Values of Ed < 0.2 were associated with early breakthrough of P, while more desirable S-shaped breakthrough curves resulted when 0.2 < Ed < 0.5. Computer simulations of the fixed bed process with the HSDM confirmed that if Ed was known, the shape of the breakthrough curve could be calculated. The surface diffusion coefficient D ₛ was a critical factor in the calculation of Ed and could be estimated based on the sorption test conditions such as media characteristics, and influent flow rate and concentration. Optimal test results were obtained with a relatively small media particle size (average particle radius 0.028 cm) and resulted in 96 % removal of P from the influent over 46 days of continuous operation. These results indicate that fixed bed sorption of P would be a feasible option for the utilization of AMD residues, thus helping to decrease AMD treatment costs while at the same time ameliorating the impacts of P contamination.
اظهر المزيد [+] اقل [-]The Interplay Between the Alfeios (Greece) River Basin Components and the Exerted Environmental Stresses: a Critical Review
2012
Bekri, Eleni S. | Yannopoulos, Panayotis C.
The characteristics (natural, socioeconomic and administrative/institutional) of Alfeios River basin, in Greece, are identified and presented, incorporating and critically reviewing all possibly found literature. The Alfeios River is a water resources system of great natural, ecological, social and economic importance for Western Greece, since it has the longest and highest flow rate watercourse in the Peloponnisos region. Moreover, the river basin was exposed in the last decades to a plethora of environmental stresses (such as hydrogeological alterations, intensively irrigated agriculture, surface and groundwater overexploitation and infrastructure developments), resulting in the degradation of its quantitative and qualitative characteristics. It is therefore necessary for the development of an integrated river basin management plan for this basin, to study and analyse the interplay between the river components and the exerted environmental stresses, taking into account the puzzle of various and conflicting water uses, including water supply, irrigation, hydropower generation, lignite thermal power production and recreation. Mitigative, preventive and control measures for the analysed environmental stresses are epigrammatically depicted. Focusing on the problematic features, the present work provides a concrete foundation for the determination and conceptualisation of management objectives and possible sustainable alternatives.
اظهر المزيد [+] اقل [-]Assessing the Use of Magnetic Methods to Monitor Vertical Migration of Metal Pollutants in Soil
2012
Sapkota, Birendra | Cioppa, Maria T.
In order to assess the use of magnetic methods to study vertical migration behavior of metal pollutants in natural soils, a controlled experiment was performed near Belle River, Ontario, Canada. The soil at the site consists primarily of clay-rich glacial till overlain by localized alluvium. Twenty PVC tubes (16″ × 8″) were inserted vertically into the ground as test capsules. Magnetite powder (<5 μm) was distributed on the surface of the soil inside ten tubes (10 grams/tube) to simulate anthropogenic contamination, while the other ten were used as controls. While the surficial magnetic susceptibility (MS) remained fairly stable in controls, decreases of 15–60% were observed in contaminated soil tubes. Post-test MS profiles from soil cores in contaminated tubes show that the magnetic signal is strongest at depths between 4 and 6 cm. Magnetic measurements and chemical analysis (using SEM-EDS) on soil layers with enhanced magnetic signal indicate the presence of iron containing particles, likely magnetite. Overall, the results suggest that magnetite powder migrated vertically downwards at a rate of ∼14 cm/year over the four month period, probably as a result of rainwater infiltration. Such magnetic methods and chemical analytical techniques are useful in the investigation of migration of metal pollutants and the potential depth of soil contamination.
اظهر المزيد [+] اقل [-]Removal of Denim Blue from Aqueous Solutions by Inorganic Adsorbents in a Fixed-Bed Column
2012
Gutiérrez-Segura, E. | Colín-Cruz, A. | Solache-Ríos, M. | Fall, C.
The adsorption behavior of denim blue from aqueous solutions in column systems, using both carbonaceous material and Fe-zeolitic tuff (Fe-Z), was determined. The breakthrough data obtained for denim blue adsorption were fitted to the empty-bed contact time, Bohart–Adams, Thomas, and Yoon–Nelson models. The parameters such as breakthrough and saturation times, bed volumes, kinetic constants, adsorption capacities, and adsorbent usage rates (AUR) were determined. The results show that the breakthrough time increases proportionally with increasing bed height, but it decreases as the kinetic constant increases. The adsorption capacity for denim blue for carbonaceous material was higher than Fe-Z. AUR was lower for carbonaceous material than Fe-Z. The results indicated that the carbonaceous material from pyrolysis of sewage sludge is a good adsorbent for denim blue removal.
اظهر المزيد [+] اقل [-]The Effects of Fuel Evaporation and Biomass Burning on Toluene Concentrations in an Urban Area
2012
Kavouras, Ilias G. | Zielinska, Barbara
Using an automated gas chromatography system coupled with an online sampling/thermal desorption module, benzene, toluene, and their alkylated derivatives were measured in Las Vegas, Nevada from 3 July to 28 August 2008. The levels of hydrocarbons were comparable to those typically found in urban environments. Statistically significant (at 95 % level) higher concentrations were measured on mid-week days as compared with those measured during weekends. This was correlated to a local traffic pattern rather than traffic on highways. The concentrations of aromatic hydrocarbons also increased during periods when transport of smoke from wildfires in central and north California was identified by remote sensing but these levels were comparable to other days with volatile organic compounds concentrations. The high toluene/benzene ratios and the estimated photochemical age of air masses implied the contribution of other local sources. Fuel evaporation accounted for the vast majority of toluene enhanced concentrations in early July (as compared with those measured in June) for sites within the urban grid, but very little for sites located outside the urban area.
اظهر المزيد [+] اقل [-]The Influence of Sediment Sources and Hydrologic Events on the Nutrient and Metal Content of Fine-Grained Sediments (Attert River Basin, Luxembourg)
2012
Martínez-Carreras, Núria | Krein, Andreas | Gallart, Francesc | Iffly, Jean-François | Hissler, Christophe | Pfister, L. (Laurent) | Hoffmann, Lucien | Owens, Philip N.
Nutrient (C, N and P) and metal (Cr, Cu, Ni, Pb and Zn) content and dynamics of suspended and channel bed sediments were analysed within the rural Attert River basin (Luxembourg). This basin is representative of the main physiographic characteristics of the country, where there is currently little information available on the composition and dynamics of fluvial sediment. Stream bed fine-grained sediment samples (n = 139) collected during low flow conditions and time-integrated suspended sediment samples (n = 183) collected during storm runoff events (October 2005 to April 2008) in seven nested basins ranging from 0.45 to 247 km² were analysed. Nutrient and metal spatial patterns, temporal trends and the relationship between their content and storm runoff characteristics (e.g. maximum discharge and sediment concentration) were assessed. Results showed a high spatial and temporal variability, mainly associated with basin characteristics and local inputs. Higher values of total C were measured in the highly forested basins located in the northern part of the Attert River basin, whereas the highest values of total P were mainly associated with material coming from grassland and with the inflow of wastewater treatment plants (i.e. higher values of total P were measured in the southern part of the basin). The abundance of metals, not only in suspended but also in channel bed sediments, was generally as follows: Zn > Cr > Ni > Pb > Cu. Both nutrient and metal concentrations were at a maximum at the beginning of the wet season, after having been accumulated during the summer. These values tended to decrease during autumn and winter due to sediment mobilisation, and a higher flow capacity to transport coarser particle fractions from the sources. In general, concentrations of nutrients and metals on suspended sediment were negatively correlated with antecedent precipitation, total precipitation, total specific discharge and maximum discharge, which has been previously associated to a ’dilution’ effect during storm runoff events. Results show that both sediment sources and hydrologic events play an important role on the spatial and temporal variability of sediment-associated nutrient and metal contents.
اظهر المزيد [+] اقل [-]Stable Carbon and Nitrogen Isotopes in a Peat Profile Are Influenced by Early Stage Diagenesis and Changes in Atmospheric CO₂ and N Deposition
2012
Esmeijer-Liu, Alice J. | Kürschner, Wolfram M. | Lotter, André F. | Verhoeven, J. T. A. | Goslar, Tomasz
In this study, we test whether the δ¹³C and δ¹⁵N in a peat profile are, respectively, linked to the recent dilution of atmospheric δ¹³CO₂ caused by increased fossil fuel combustion and changes in atmospheric δ¹⁵N deposition. We analysed bulk peat and Sphagnum fuscum branch C and N concentrations and bulk peat, S. fuscum branch and Andromeda polifolia leaf δ¹³C and δ¹⁵N from a 30-cm hummock-like peat profile from an Aapa mire in northern Finland. Statistically significant correlations were found between the dilution of atmospheric δ¹³CO₂ and bulk peat δ¹³C, as well as between historically increasing wet N deposition and bulk peat δ¹⁵N. However, these correlations may be affected by early stage kinetic fractionation during decomposition and possibly other processes. We conclude that bulk peat stable carbon and nitrogen isotope ratios may reflect the dilution of atmospheric δ¹³CO₂ and the changes in δ¹⁵N deposition, but probably also reflect the effects of early stage kinetic fractionation during diagenesis. This needs to be taken into account when interpreting palaeodata. There is a need for further studies of δ¹⁵N profiles in sufficiently old dated cores from sites with different rates of decomposition: These would facilitate more reliable separation of depositional δ¹⁵N from patterns caused by other processes.
اظهر المزيد [+] اقل [-]Compositions of Xylem Fluid of Arsenic-Stressed Barley Seedlings: A Measurement with PIXE System and HPLC
2012
Shaibur, Molla Rahman | Sera, Koichiro | Kawai, Shigenao
Compositions of the xylem fluid of arsenic (As)-stressed hydroponic barley (Hordeum vulgare L. cv. Minorimugi) were investigated. The seedlings were treated with 0, 6.7, 33.5, and 67 μM As in the form of arsenite. The xylem fluids were collected from the cut surface of plants 14 days after treatments and analyzed. Arsenic toxicity reduced the flow rate of xylem fluid. Mineral concentrations of the xylem fluid were measured with particle-induced X-ray emission system, but organic solutes were measured with high-performance liquid chromatography. Arsenic did not influence the concentrations of phosphorus (P), potassium (K), magnesium (Mg), and iron (Fe) very much. However, the concentrations of manganese (Mn), zinc (Zn), and copper (Cu) increased resulting in fairly stable translocation of the elements. The concentration and translocation of Ca decreased in the xylem fluid with increasing As concentrations in the medium. Arsenic concentration increased with increasing As in the nutrient solution, but its translocation decreased. Arsenic treatments did not affect phytosiderophore concentration very much, but their translocation decreased. The concentration of citrate increased but that of malate and succinate decreased in 33.5 μM As-treated plants.
اظهر المزيد [+] اقل [-]Synergistic Degradation of Eosin Y by Photocatalysis and Electrocatalysis in UV Irradiated Solution Containing Hybrid BiOCl/TiO₂ Particles
2012
Liu, Zhang | Xu, Xiaoxin | Fang, Jianzhang | Zhu, Ximiao | Li, Baojian
The present work focused on treatment of eosin (EO) by photocatalysis (PC) combined with electrocatalysis (EC) process. Bismuth oxychloride/titanium dioxide (BiOCl/TiO₂) hybrid particles, which were used as new heterogeneous photocatalysts, were exploited in a reverse microemulsion approach and were characterized by XRD, UV–Vis diffuse spectra, BET, and SEM technologies. All degradation experiments were performed using a self-assemble experimental setup, in which PC and EC could be carried out simultaneously or individually. The results indicated that BiOCl/TiO₂ showed enhanced photocatalytic performance under UV irradiation, and 50% BiOCl/TiO₂ exhibited the best photoactivity due to its high degree of crystallization, the mesoporous structure and corresponding large special surface area, improved absorption ability in UV region, and the heterojunction formed between two coupling particles. The combined degradation process displayed synergistic effect on the degradation of EO owing to the generation of H₂O₂ at graphite cathode. The parameters such as, pH, reaction current, and initial concentration of EO were monitored in order to optimize the operating conditions. Pseudo-first-order kinetics was proposed and roughly fitted the combined degradation of EO. The combined system in this work suggested a new research idea for the degradation of dye wastewater.
اظهر المزيد [+] اقل [-]Infiltration Rates in Reclaimed Surface Coal Mines
2012
Reynolds, Brandon | Reddy, Jothi
Reclamation of land disturbed due to mining in arid and semiarid environments occurs across the globe. Large-scale surface mines provide unique opportunities to examine the reclamation process across a landscape. The objectives of this research were to (1) measure infiltration rates in reclaimed surface coal mines and (2) determine the effects of soil properties on ground cover on infiltration rates of surface coal mines. In this study, reclaimed land 10–15 and 20–25 years old, and native reference site (undisturbed) were investigated at two large surface coal mines in Wyoming, USA. Infiltration rates were measured using double-ring infiltrometer method. The soil properties including bulk density, pH, carbonate content, organic carbon content, aggregate stability, electrical conductivity, and soil texture were analyzed using standard methods. The ground cover was estimated visually. Statistical analysis was conducted to determine if any correlations between infiltration rate and soil properties and ground cover exist. Results suggest that at Mine 1, infiltration rates on reclaimed land were found to be significantly higher in the 20–25-year-old reclamation than the 10–15-year-old reclamation and the native site. At Mine 2, the native site had significantly higher infiltration than 20–25-year-old reclamation, which in turn had significantly higher infiltration rates than the 10–15-year-old reclaimed site. Along with infiltration, soil characteristics were examined. Overall, the findings of this study suggest soil texture and plant cover play an important role in controlling infiltration rates in reclaimed surface coal mines.
اظهر المزيد [+] اقل [-]