خيارات البحث
النتائج 751 - 760 من 7,290
Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules النص الكامل
2022
Mukarram, Mohammad | Petrik, Peter | Mushtaq, Zeenat | Khan, M. Masroor A. | Gulfishan, Mohd | Lux, Alexander
Silicon is absorbed as uncharged mono-silicic acid by plant roots through passive absorption of Lsi1, an influx transporter belonging to the aquaporin protein family. Lsi2 then actively effluxes silicon from root cells towards the xylem from where it is exported by Lsi6 for silicon distribution and accumulation to other parts. Recently, it was proposed that silicon nanoparticles (SiNPs) might share a similar route for their uptake and transport. SiNPs then initiate a cascade of morphophysiological adjustments that improve the plant physiology through regulating the expression of many photosynthetic genes and proteins along with photosystem I (PSI) and PSII assemblies. Subsequent improvement in photosynthetic performance and stomatal behaviour correspond to higher growth, development, and productivity. On many occasions, SiNPs have demonstrated a protective role during stressful environments by improving plant-water status, source-sink potential, reactive oxygen species (ROS) metabolism, and enzymatic profile. The present review comprehensively discusses the crop improvement potential of SiNPs stretching their role during optimal and abiotic stress conditions including salinity, drought, temperature, heavy metals, and ultraviolet (UV) radiation. Moreover, in the later section of this review, we offered the understanding that most of these upgrades can be explained by SiNPs intricate correspondence with phytohormones, antioxidants, and signalling molecules. SiNPs can modulate the endogenous phytohormones level such as abscisic acid (ABA), auxins (IAAs), cytokinins (CKs), ethylene (ET), gibberellins (GAs), and jasmonic acid (JA). Altered phytohormones level affects plant growth, development, and productivity at various organ and tissue levels. Similarly, SiNPs regulate the activities of catalase (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and ascorbate-glutathione (AsA-GSH) cycle leading to an upgraded defence system. At the cellular and subcellular levels, SiNPs crosstalk with various signalling molecules such as Ca²⁺, K⁺, Na⁺, nitric oxide (NO), ROS, soluble sugars, and transcription factors (TFs) was also explained.
اظهر المزيد [+] اقل [-]Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics النص الكامل
2022
Lemonnier, C. | Chalopin, M. | Huvet, A. | Le Roux, F. | Labreuche, Y. | Petton, B. | Maignien, L. | Paul-Pont, I. | Reveillaud, J.
Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics النص الكامل
2022
Lemonnier, C. | Chalopin, M. | Huvet, A. | Le Roux, F. | Labreuche, Y. | Petton, B. | Maignien, L. | Paul-Pont, I. | Reveillaud, J.
The problematic of microplastics pollution in the marine environment is tightly linked to their colonization by a wide diversity of microorganisms, the so-called plastisphere. The composition of the plastisphere relies on a complex combination of multiple factors including the surrounding environment, the time of incubation along with the polymer type, making it difficult to understand how the biofilm evolves during the microplastic lifetime over the oceans. To better define bacterial community assembly processes on plastics, we performed a 5 months spatio-temporal survey of the plastisphere in an oyster farming area in the Bay of Brest (France). We deployed three types of plastic pellets in two positions in the foreshore and in the water column. Plastic-associated biofilm composition in all these conditions was monitored using 16 S rRNA metabarcoding and compared to free-living and attached bacterial members of seawater. We observed that bacterial families associated to plastic pellets were significantly distinct from the ones found in seawater, with a significant prevalence of filamentous Cyanobacteria on plastics. No convergence towards a unique plastisphere was detected between polymers exposed in the intertidal and subtidal area, emphasizing the central role of the surrounding environment on constantly shaping the plastisphere community diversity. However, we could define a bulk of early-colonizers of marine biofilms such as Alteromonas, Pseudoalteromonas or Vibrio. These early-colonizers could reach high abundances in floating microplastics collected in field-sampling studies, suggesting the plastic-associated biofilms could remain at early development stages across large oceanic scales. Our study raises the hypothesis that most members of the plastisphere, including putative pathogens, could result of opportunistic colonization processes and unlikely long-term transport.
اظهر المزيد [+] اقل [-]Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics النص الكامل
2022
Lemonnier, C. | Chalopin, Morgane | Huvet, Arnaud | Le Roux, Frederique | Labreuche, Yannick | Petton, Bruno | Maignien, Lois | Paul-pont, Ika | Reveillaud, J.
The problematic of microplastics pollution in the marine environment is tightly linked to their colonization by a wide diversity of microorganisms, the so-called plastisphere. The composition of the plastisphere relies on a complex combination of multiple factors including the surrounding environment, the time of incubation along with the polymer type, making it difficult to understand how the biofilm evolves during the microplastic lifetime over the oceans. To better define bacterial community assembly processes on plastics, we performed a 5 months spatio-temporal survey of the plastisphere in an oyster farming area in the Bay of Brest (France). We deployed three types of plastic pellets in two positions in the foreshore and in the water column. Plastic-associated biofilm composition in all these conditions was monitored using 16 S rRNA metabarcoding and compared to free-living and attached bacterial members of seawater. We observed that bacterial families associated to plastic pellets were significantly distinct from the ones found in seawater, with a significant prevalence of filamentous Cyanobacteria on plastics. No convergence towards a unique plastisphere was detected between polymers exposed in the intertidal and subtidal area, emphasizing the central role of the surrounding environment on constantly shaping the plastisphere community diversity. However, we could define a bulk of early-colonizers of marine biofilms such as Alteromonas, Pseudoalteromonas or Vibrio. These early-colonizers could reach high abundances in floating microplastics collected in field-sampling studies, suggesting the plastic-associated biofilms could remain at early development stages across large oceanic scales. Our study raises the hypothesis that most members of the plastisphere, including putative pathogens, could result of opportunistic colonization processes and unlikely long-term transport.
اظهر المزيد [+] اقل [-]A source-sink landscape approach to mitigation of agricultural non-point source pollution: Validation and application النص الكامل
2022
Yu, Wanqing | Zhang, Jing | Liu, Lijuan | Li, Yan | Li, Xiaoyu
Optimizing landscape pattern to reduce the risk of non-point source (NPS) pollution is an effective measure to improve river water quality. The “source-sink” landscape theory is a recent research tool for landscape pattern analysis that can effectively integrate landscape type, area, spatial location, and topographic features to depict the spatial heterogeneity of NPS pollution. Based on this theory, we quantitatively analyzed the influence of “source-sink” landscape pattern on the river water quality in one of the most intensive agricultural watersheds in Southeastern China. The results indicated that the proportion of “sink” landscape (68.59%) was greater than that of “source” landscape (31.41%) in the study area. In addition, when elevation and slope increased, the “source” landscape proportion decreased, and the “sink” landscape proportion increased. Nitrogen (N) and phosphorus (P) pollutants in rivers showed significant seasonal and spatial variations. Farmland was the primary source of nitrate nitrogen (NO₃⁻-N) and total nitrogen (TN) pollution, whereas residential land was the primary source of ammonium nitrogen (NH₄⁺-N) and total phosphorus (TP) pollution. Intensively cultivated areas and densely inhabited areas degraded water quality despite high proportions of forest land. The four “source-sink” landscape indices (LWLI, LWLI'e, LWLI's, LWLI'd) had significant positive correlations with NO₃⁻-N and TN and weak correlations with NH₄⁺-N and TP. The capacity of LWLI to quantify the NPS pollution was greater in agricultural areas than in residential areas. The “source-sink” landscape thresholds resulted in abrupt changes in water quality. When LWLI was ∼0.35, the probability of river water quality degradation increased sharply. The results suggest the importance of optimizing the “source-sink” landscape pattern for mitigating agricultural NPS pollution and provide policy makers with adequate new information on the agroecosystem-environmental interface in highly developed agricultural watersheds.
اظهر المزيد [+] اقل [-]Computational and data mining studies to understand the distribution and dynamics of Temoneria (TEM) β-lactamase and their interaction with β-lactam and β-lactamase inhibitors النص الكامل
2022
Gehlot, Priyanka | P, Hariprasad
β-lactams are large group of antibiotics widely used to suppress the bacterial growth by inhibiting cell wall synthesis. Bacterial resistance against β-lactam antibiotics is primarily mediated through the production of Temoneria (TEM) β-lactamase (BLs), with almost 474 variants identified in Lactamase Engineering Database (LacED). The present study aims to develop a model to track the evolution of TEM BLs and their interactions with β-lactam and BLs inhibitors through data mining and computational approaches. Further, the model will be used to predict the effective combinations of β-lactam and BLs inhibitors to treat the bacterial infection harbouring emerging variants of β-lactamase. The molecular docking study results demonstrated that most TEM mutants recorded the least binding energy to penicillin and cephalosporin (I/II/III/IV/V generations) class of antibiotics. On the contrary, the same mutants recorded higher binding energy to carbapenem and Monobactam class of antibiotics. Among the BLs inhibitors, tazobactam recorded the least binding energy against most of the TEM mutants, indicating that it can lower the catalytic activity of TEM BLs, thereby potentiating antibiotic action. Similarly, data mining work has assisted us in creating a database of TEM mutants that has comprehensive data on mutations, bacterial diversity, Km, MIC, and IRT types. It has been noted that earlier released antibiotics like amoxicillin and ampicillin had lower Km and higher MIC values, which indicates the prevalence of bacterial resistance. By analysing the differential binding energy (ΔBE) of the selected TEM mutants against β-lactam and BLs inhibitors, the most effective combination of β-lactam (carbapenem and monobactam class of antibiotics) and BLs inhibitors (tazobactam) was identified, to cure bacterial diseases/infections and to prevent similar antibiotic resistance outbreaks. Therefore, our study opens a new avenue in developing strategies to manage antibiotic resistance in bacteria.
اظهر المزيد [+] اقل [-]Spatial distribution, homologue patterns and ecological risks of chlorinated paraffins in mangrove sediments along the South China Coast النص الكامل
2022
Chen, Hui | Han, Xu | Liang, Bowen | Deng, Man | Du, Bibai | Zeng, Lixi
The spatial distribution, homologue patterns, and ecological risks of chlorinated paraffins (CPs) were investigated in sediments from sixteen mangrove wetlands along the South China Coast (SCS). The total concentrations of CPs in mangrove sediments from Guangdong, Fujian, Guangxi, and Hainan were in the range of 933–4760, 619–2300, 375–1550, and 271–658 ng/g dry weight, respectively. The contamination levels and spatial distribution of short-chain and medium-chain CPs (SCCPs and MCCPs, respectively) in mangrove sediments were mainly affected by local population scale and CP industries. The dominant CP patterns in sediments were C₁₀–₁₁Cl₆₋₈ and C₁₄Cl₇₋₉ for SCCPs and MCCPs, respectively. Redundancy analysis, based on CP levels and several potential influencing factors showed that MCCPs/SCCPs ratio was the main factor affecting the accumulation of CPs in mangrove sediments. Additionally, MCCP concentrations were significantly correlated with total organic carbon (TOC), indicating that TOC might affect MCCP accumulation in mangrove sediments. Risk assessments indicated that CPs would pose medium ecological risks to sediment dwelling organisms in nearly one-third of the sampling sites. This is the first comprehensive report of the sedimentary SCCPs and MCCPs in mangrove wetlands along the SCS and highlights the need for more sediment toxicity data for CPs.
اظهر المزيد [+] اقل [-]Multiple-stressor effects of ocean acidification, warming and predation risk cues on the early ontogeny of a rocky-shore keystone gastropod النص الكامل
2022
Manríquez, Patricio H. | Jara, María Elisa | González, Claudio P. | Jeno, Katherine | Domenici, P. (Paolo) | Watson, Sue-Ann | Duarte, Cristian | Brokordt, Katherina
To understand how climate change stressors might affect marine organisms and support adequate projections it is important to know how multiple stressors may be modulated by the presence of other species. We evaluated the direct effects of ocean warming (OW) and ocean acidification (OA) together with non-consumptive effects (NCEs) of the predatory crab Acanthocyclus hassleri on early ontogeny fitness-related traits of the commercially important rocky-shore keystone gastropod Concholepas concholepas. We measured the response of nine traits to these stressors at either the organismal level (survival, growth, feeding rates, tenacity, metabolic rate, calcification rate) or sub-organismal level (nutritional status, ATP-supplying capacity, stress condition). C. concholepas survival was not affected by any of the stressors. Feeding rates were not affected by OW or OA; however, they were reduced in the presence of crab NCEs compared with control conditions. Horizontal tenacity was affected by the OA × NCEs interaction; in the presence of NCEs, OA reduced tenacity. The routine metabolic rate, measured by oxygen consumption, increased significantly with OW. Nutritional status assessment determined that carbohydrate content was not affected by any of the stressors. However, protein content was affected by the OA × NCEs interaction; in the absence of NCEs, OA reduced protein levels. ATP-supplying capacity, measured by citrate synthase (CS) activity, and cellular stress condition (HSP70 expression) were reduced by OA, with reduction in CS activity found particularly at the high temperature. Our results indicate C. concholepas traits are affected by OA and OW and the effects are modulated by predator risk (NCEs). We conclude that some C. concholepas traits are resilient to climate stressors (survival, growth, horizontal tenacity and nutritional status) but others are affected by OW (metabolic rate), OA (ATP-supplying capacity, stress condition), and NCEs (feeding rate). The results suggest that these negative effects can adversely affect the associated community.
اظهر المزيد [+] اقل [-]Bioaccumulation and trophic magnification of emerging and legacy per- and polyfluoroalkyl substances (PFAS) in a St. Lawrence River food web النص الكامل
2022
Muñoz, Gabriel | Mercier, Laurie | Duy, Sung Vo | Liu, Jinxia | Sauvé, Sébastien | Houde, Magali
Research on per- and polyfluoroalkyl substances (PFAS) in freshwater ecosystems has focused primarily on legacy compounds and little is still known on the presence of emerging PFAS. Here, we investigated the occurrence of 60 anionic, zwitterionic, and cationic PFAS in a food web of the St. Lawrence River (Quebec, Canada) near a major metropolitan area. Water, sediments, aquatic vegetation, invertebrates, and 14 fish species were targeted for analysis. Levels of perfluorobutanoic acid (PFBA) in river water exceeded those of perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS), and a zwitterionic betaine was observed for the first time in the St. Lawrence River. The highest mean PFAS concentrations were observed for the benthopelagic top predator Smallmouth bass (Micropterus dolomieu, Σ₆₀PFAS ∼ 92 ± 34 ng/g wet weight whole-body) and the lowest for aquatic plants (0.52–2.3 ng/g). Up to 33 PFAS were detected in biotic samples, with frequent occurrences of emerging PFAS such as perfluorobutane sulfonamide (FBSA) and perfluoroethyl cyclohexane sulfonate (PFECHS), while targeted ether-PFAS all remained undetected. PFOS and long-chain perfluorocarboxylates (C10–C13 PFCAs) dominated the contamination profiles in biota except for insects where PFBA was predominant. Gammarids, molluscs, and insects also had frequent detections of PFOA and fluorotelomer sulfonates, an important distinction with fish and presumably due to different metabolism. Based on bioaccumulation factors >5000 and trophic magnification factors >1, long-chain (C10–C13) PFCAs, PFOS, perfluorodecane sulfonate, and perfluorooctane sulfonamide qualified as very bioaccumulative and biomagnifying. Newly monitored PFAS such as FBSA and PFECHS were biomagnified but moderately bioaccumulative, while PFOA was biodiluted.
اظهر المزيد [+] اقل [-]Evolution of antibiotic resistance genes and bacterial community during erythromycin fermentation residue composting النص الكامل
2022
Ren, Jianjun | Deng, Liujie | Li, Chunyu | Li, Zhijie | Dong, Liping | Zhao, Jian | Huhetaoli, | Zhang, Jin | Niu, Dongze
The removal efficiency of antibiotic resistance genes (ARGs) is the biggest challenge for the treatment of erythromycin fermentation residue (EFR). In the current research, 0% (control), 10% (T1), and 30% (T2) spray-dried EFR were composted with bulking materials, consisting of cattle manure and maize straw, for 30 days. Environmental factors and bacterial community on the behaviors of ARGs were further investigated. Apart from the high levels of erythromycin, the electrical conductivities were also increased by 66.7% and 291.7% in the samples of T1 and T2, respectively. After 30 days of composting, total ARGs in the samples of control were decreased by 78.1%–91.2%, but those of T1 and T2 were increased 14.5–16.7- and 38.5–68.7-fold. ARGs related to ribosomal protection (erm) dominated the samples of T1 and T2 at D 13 and 30, especially that ermF accounted for more than 80% of the total ARGs. Furthermore, the results of bacterial community revealed that EFR promoted the growth of Proteobacteria and Bacteroidetes, but inhibited that of Actinobacteria, Verrucomicrobia and Chloroflexi. Network analysis revealed that the enriched ARGs had strong correlation with seven bacterial genera, including Halomonas, Oceanobacillus, and Alcaligenes, most of which are halotolerant. Above all, erythromycin combined with high salinity can have synergistic effect on the enrichment of ARGs and their hosts.
اظهر المزيد [+] اقل [-]Spatial origin analysis on atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Shanghai النص الكامل
2022
Liu, Ying | Zhang, Xiaomin | Tan, Jianguo | Grathwohl, Peter | Lohmann, Rainer
Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) onto soil threatens terrestrial ecosystem. To locate potential source areas geographically, a total of 139 atmospheric bulk deposition samples were collected during 2012–2019 at eight sites in Shanghai and its surrounding areas. A multisite joint location method was developed for the first time to locate potential source areas of atmospheric PAHs based on an enhanced three dimensional concentration weighted trajectory model. The method considered spatial and temporal variations of atmospheric boundary layer height and homogenized all results over the eight sites via geometric mean. Regional transport was an important contributor of PAH atmospheric deposition while massive local emissions may disturb the identification of potential source areas. Northwesterly winds were associated with elevated deposition fluxes. Potential source areas were identified by the multisite joint location method and included Hebei, Tianjin, Shandong and Jiangsu to the north, and Anhui to the west of Shanghai. PM and SO₂ data from the national ground monitoring stations confirmed the identified source areas of deposited PAHs in Shanghai.
اظهر المزيد [+] اقل [-]Trophic transfer of methylmercury and brominated flame retardants in adjacent riparian and aquatic food webs: 13C indicates biotransport of contaminants through food webs النص الكامل
2022
Wu, Xiaodan | Chen, Laiguo | Li, Xiaoyun | Cao, Xingpei | Zheng, Xiaobo | Li, Ronghua | Zhang, Jia'en | Luo, Xiaojun | Mai, Bixian
Biomagnification of persistent toxic substances (PTSs) in food chains is of environmental concern, but studies on biotransport of PTSs across aquatic and riparian food chains are still incomplete. In this study, biomagnification of several PTSs including methylmercury (MeHg), polybrominated diphenyl ethers (PBDEs), and 1,2-bis (2,4,6-tribromophenoxy) ethane (BTBPE) was investigated in adjacent aquatic and riparian food webs. Concentrations of MeHg and PBDEs ranged from 2.37 to 353 ng/g dry weight (dw) and not detected (Nd) to 65.1 ng/g lipid weight (lw) in riparian samples, respectively, and ranged from Nd to 705 ng/g dw and Nd to 187 ng/g lw in aquatic samples, respectively. Concentrations of MeHg were significantly correlated with δ¹³C (p < 0.01) rather than δ¹⁵N (p > 0.05) values in riparian organisms, while a significant correlation was observed between concentrations of MeHg and δ¹⁵N (p < 0.01) in aquatic organisms. Biomagnification factors (BMFs) and trophic magnification factors (TMFs) of PBDE congeners were similar in riparian and aquatic food webs, while BMFs and TMFs of MeHg were much higher in aquatic food web than those in riparian food web. The results indicate the biotransport of MeHg from aquatic insects to terrestrial birds, and δ¹³C can be a promising ecological indicator for biotransport of pollutants across ecosystems.
اظهر المزيد [+] اقل [-]