خيارات البحث
النتائج 771 - 780 من 7,292
Estimating organic aerosol emissions from cooking in winter over the Pearl River Delta region, China النص الكامل
2022
Xing, Li | Fu, Tzung-May | Liu, Tengyu | Qin, Yiming | Zhou, Liyuan | Chan, Chak K. | Guo, Hai | Yao, Dawen | Duan, Keqin
Cooking is an important source of organic aerosols (OA), particularly in urban areas, but it has not been explicitly included in current emission inventories in China. This study estimated the organic aerosol emissions from cooking during winter over the Pearl River Delta (PRD) region, China. Using the retrieved hourly cooking organic aerosol (COA) concentrations at two sites in Hong Kong and Guangzhou, population density, and daily per capita COA emissions, we determined the spatial and temporal distribution of COA emissions over the PRD region based on two approaches by treating COA as non-volatile (NVCOA) and semi-volatile (SVCOA), respectively. By using the estimated COA emissions and the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) model, we reproduced the diurnal cycles of COA concentrations at the PolyU site in Hong Kong and Panyu site in Guangzhou. We also resolved the different patterns of COA between weekdays and weekends. The mean COA concentration during wintertime over the urban areas of the PRD region was 0.7 μg m⁻³ and 0.9 μg m⁻³ for the NVCOA and SVCOA cases, respectively, contributing 5.1% and 6.9% to the urban OA concentrations. The total COA emissions in winter over the PRD region were estimated to be 3.5 × 10⁸ g month⁻¹ and 3.8 × 10⁸ g month⁻¹ for the NVCOA and SVCOA cases, respectively, adding 34.8% and 37.8% to the total primary organic aerosol emissions. Considering COA emissions in the model increased the mean regional OA concentrations by 4.6% and 7.4% for the NVCOA and SVCOA cases, respectively. Our study therefore highlights the importance of cooking activities to OA concentrations in winter over the PRD region.
اظهر المزيد [+] اقل [-]Micro-dynamic process of cadmium removal by microbial induced carbonate precipitation النص الكامل
2022
Sheng, Mingping | Peng, Dinghua | Luo, Shihua | Ni, Ting | Luo, Huanyan | Zhang, Renfeng | Wen, Yu | Xu, Heng
Microbially induced carbonate precipitation (MICP) is a technique used extensively to address heavy metal pollution but its micro-dynamic process remains rarely explored. In this study, A novel Cd-tolerant ureolytic bacterium DL-1 (Pseudochrobactrum sp.) was used to study the micro-dynamic process. With conditions optimized by response surface methodology, the removal efficiency of Cd²⁺ could achieve 99.89%. Three components were separated and characterized in the reaction mixture of Cd²⁺ removal by MICP. The quantitative-dynamic distribution of Cd²⁺ in different components was revealed. Five synergistic effects for Cd²⁺ removal were found, including co-precipitation, adsorption by precipitation, crystal precipitation on the cell surface, intracellular accumulation and extracellular chemisorption. Importantly, during Cd²⁺ removal by MICP, the phenomenon that crystalline nanoparticles adhere to the cell surface, but without any micrometer-sized precipitation encapsulated bacterial cells was observed. This indicated that the previously studied model of bacterial cells as nucleation sites for metal cation precipitation and crystal growth is oversimplified. Our findings provided valuable insights into the mechanism of heavy metals removal by MICP, and a more straightforward method for studying biomineralization-related dynamic process.
اظهر المزيد [+] اقل [-]Effective Sb(V) removal from aqueous solution using phosphogypsum-modified biochar النص الكامل
2022
Li, Ling | Liao, Lu | Wang, Bing | Li, Wei | Liu, Taoze | Wu, Pan | Xu, Qingya | Liu, Shirong
Antimonate is the dominant form of antimony (Sb) in Sb mine water. The treatment of high-Sb mine water essentially reduces the discharge of antimonate oxyanions ([Sb(OH)₆]⁻) in it. Biochar obtained from phosphogypsum-modified anaerobic digested distillers’ grain (PADC) can effectively adsorb antimonate from water. In this work, using batch adsorption experiments, mathematical models, and characterization methods, the mechanism of Sb(V) adsorption by PADC was studied. Compared with pristine biochar, PADC biochar showed abundant lamellar and vesicular structures with significant calcium ion loading on the surface. The kinetics data of the adsorption of Sb(V) on the PADC biochar followed the Elovich equation (R² = 0.992), indicating that heterogeneous adsorption had occurred. The results also showed that intraparticle diffusion played an important role in controlling Sb(V) adsorption by PADC biochar. The Redlich–Peterson model best fit the Sb(V) adsorption isotherm (R² = 0.997), indicating that the adsorption was a combination of the Langmuir and Freundlich models. The maximum adsorption capacity of PADC biochar for Sb(V) is 8123 mg/kg, which is more than twice that of the pristine biochar (3487 mg/kg) and is sufficient for Sb(V) treatment in most mine water. Fourier transform infrared (FTIR) spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffractometry (XRD), and Transmission electron microscopy with energy dispersive X-ray spectroscopy (TEM-EDS) analyses revealed that the dominant mechanism of Sb(V) removal by PADC biochar was the formation of Ca–O–Sb complexes or amorphous surface precipitation as well as electrostatic adsorption. This work demonstrated the potential of PADC biochar in the treatment of Sb-contaminated mine water.
اظهر المزيد [+] اقل [-]How does Three Gorges Dam regulate heavy metal footprints in the largest freshwater lake of China النص الكامل
2022
Wang, Hua | Yuan, Weihao | Zeng, Yichuan | Liang, Dongfang | Deng, Yanqing | Zhang, Xinyue | Li, Yuanyuan
Herein, a two-dimensional (2-D) vertically-averaged hydrodynamic model was applied to study the heavy metal particle footprints pre- and post-Three Gorges Dam (TGD) in Poyang Lake. Two defined indexes-Reserve Impact Index (σRII) and Species Impact Index (ηSII) were applied to assess the potential impact of the copper footprint on nature reserves and sensitive species quantitatively. The results demonstrated that the movement speed, distribution, and trajectory of copper particle footprints differed enormously pre- and post-TGD. By contrast, the post-TGD footprints were more complex because of the dam-induced variations in hydrology and meteorology. TGD had both pros and cons for the copper footprint on the reserves based on the results of σRII. It had changed the way for the transport of heavy metals and altered the patterns of exposure risk in the reserves. Sustainable management of Poyang Lake could be achieved by optimizing daily monitoring works. The ηSII for Finless Porpoises do not differ significantly between scenarios, but the ηSII for Siberian White Cranes increased by 0.92 and 0.83 for the two periods pre- and post-TGD, respectively. Heavy metals in food sources and the excreta of Siberian White Cranes could be of great concern in future studies. This study provides a theoretical basis for the in-depth study of the TGD-induced impact on Poyang Lake and provides a reference for the long-term treatment of Poyang Lake and the protection of key species.
اظهر المزيد [+] اقل [-]Influence of soil properties on cadmium accumulation in vegetables: Thresholds, prediction and pathway models based on big data النص الكامل
2022
Pan, Shu-Fang | Ji, Xiong-Hui | Xie, Yun-He | Liu, Sai-Hua | Tian, Fa-Xiang | Liu, Xin-Liang
Soil properties, such as soil pH, soil organic matter (SOM), cation exchange capacity (CEC), are the most important factors affecting cadmium (Cd) accumulation in vegetables. In this study, we conducted big data mining of 31,342 soil and vegetable samples to examine the influence of soil properties (soil pH, SOM, CEC, Zn and Mn content) on the accumulation of Cd in root, solanaceous, and leafy vegetables in Hunan Province, China. Specifically, the Cd accumulation capability was in the following order: leafy vegetables > root vegetables > solanaceous vegetables. The soil property thresholds for safety production in vegetables were determined by establishing nonlinear models between Cd bioaccumulation factor (BCF) and the individual soil property, and were 6.5 (pH), 30.0 g/kg (SOM), 13.0 cmol/kg (CEC), 100–140 mg/kg (Zn), and 300–400 mg/kg (Mn). When soil property values were higher than the thresholds, Cd accumulation in vegetables tended to be stable. Prediction models showed that pH and soil Zn were the leading factors influencing Cd accumulation in root vegetables, explaining 87% of the variance; pH, SOM, soil Zn and Mn explained 68% of the variance in solanaceous vegetables; pH and SOM were the main contributors in leafy vegetables, explaining 65% of the variance. Further, variance partitioning analysis (VPA) revealed that the interaction effect of the corresponding key soil properties contributed mostly to BCF. Meanwhile, partial least squares (PLS) path modeling was employed to analyze the path and the interactive effects of soil properties on Cd BCF. pH and SOM were found to be the biggest two players affecting BCF in PLS-models, and the most substantial interactive influence paths of soil properties on BCF were different among the three types of vegetables.
اظهر المزيد [+] اقل [-]Fragility of nocturnal interactions: Pollination intensity increases with distance to light pollution sources but decreases with increasing environmental suitability النص الكامل
2022
Soteras, Florencia | Camps, Gonzalo Andrés | Costas, Santiago Martín | Giaquinta, Adrián | Peralta, Guadalupe | Cocucci, Andrea Arístides
Light pollution represents a widespread long-established human-made disturbance and an important threat to nocturnal pollination. Distance from the niche centroid where optimal environmental conditions join may be related to species sensitivity to habitat change. We estimated the environmental suitability of the plant species Erythrostemon gilliesii and of its guild of hawkmoth pollinators. We considered the overlap of suitability maps of both partners as the environmental suitability of the interaction. We used a three-year record of ten E. gilliesii populations to calculate pollination intensity as the number of individuals that received pollen per population. In addition, for each population, we measured the distance to the high light pollution source around a buffer of 15 km radius. Finally, we predicted pollination intensity values for environmental suitability ranging from 0 to 1, and distance to high light pollution sources ranging from 0 to 56 Km. Pollination intensity decreased along an axis of increasing environmental suitability and increased with distance to sources of light pollution. The highest values of pollination intensity were observed at greatest distances to sources of light pollution and where environmental suitability of the interaction was lowest. The prediction model evidenced that, when environmental suitability was lowest, pollination intensity increased with distance to sources of high light pollution. However, when environmental suitability was intermediate or high, pollination intensity decreased away and until 28 km from the sources of high light pollution. Beyond 28 km from the sources of high light pollution, pollination intensity remained low and constant. Populations under conditions of low environmental suitability might be more likely to respond to disturbances that affect pollinators than populations under conditions of high environmental suitability.
اظهر المزيد [+] اقل [-]Blood mercury concentrations in four sympatric gull species from South Western France: Insights from stable isotopes and biologging النص الكامل
2022
Jouanneau, William | Sebastiano, Manrico | Rozen-Rechels, David | Harris, Stephanie M. | Blévin, Pierre | Angelier, Frédéric | Brischoux, François | Gernigon, Julien | Lemesle, Jean-Christophe | Robin, Frédéric | Cherel, Yves | Bustamante, Paco | Chastel, Olivier
Mercury (Hg) is a toxic trace element widely distributed in the environment, which particularly accumulates in top predators, including seabirds. Among seabirds, large gulls (Larus sp) are generalist feeders, foraging in both terrestrial and marine habitats, making them relevant bioindicators of local coastal Hg contamination. In the present study, we reported blood Hg concentrations in adults and chicks of four different gull species breeding on the French Atlantic coast: the European herring gull (Larus argentatus), the Lesser black-backed gull (L. fuscus), the Great black-backed gull (L. marinus) and the Yellow-legged gull (L. michahellis). We also investigated the potential role of foraging ecology in shaping Hg contamination across species, using the unique combination of three dietary tracers (carbon, nitrogen and sulfur stable isotopes) and biologging (GPS tracking). A high concentration of Hg was associated with high trophic position and a marine diet in gulls, which was corroborated by birds’ space use strategy during foraging trips. Adults of all four species reached Hg concentrations above reported toxicity thresholds. Specifically, adults of Great black-backed gulls had a high trophic marine specialized diet and significantly higher Hg concentrations than the three other species. Blood Hg was 4–7 times higher in adults than in chicks, although chicks of all species received mainly marine and high trophic position prey, which is expected to be the cause of blood Hg concentrations of toxic concern. By using both stable isotopes and GPS tracking, the present study provides compelling insights on the main feeding habits driving Hg contamination in a seabird assemblage feeding in complex coastal environments.
اظهر المزيد [+] اقل [-]Underwater noise emissions from ships during 2014–2020 النص الكامل
2022
Jalkanen, Jukka-Pekka | Johansson, Lasse | Andersson, Mathias H. | Majamäki, Elisa | Sigray, Peter
This paper reports trends in the input of underwater noise source energy emission from global shipping, based on bottom-up modeling of individual ships. In terms of energy, we predict the doubling of global shipping noise emissions every 11.5 years, on average, but there are large regional differences. Shipping noise emissions increase rapidly in Arctic areas and the Norwegian Sea. The largest contributors are the containerships, dry bulk and liquid tanker vessels which emit 75% of the underwater shipping noise source energy. The COVID-19 pandemic changed vessel traffic patterns and our modeling indicates a reduction of −6% in global shipping noise source energy in the 63 Hz ⅓ octave band. This reduction was largest in the Greenland Sea, the Coastal Waters of Southeast Alaska and British Columbia as well as the Gulf of California, temporarily disrupting the increasing pre-pandemic noise emission trend. However, in some sea areas, such as the Indian Ocean, Yellow Sea and Eastern China Sea the emitted noise source energy was only slightly reduced. In global scale, COVID-19 pandemic reduced the underwater shipping noise emissions close to 2017 levels, but it is expected that the increasing trend of underwater noise emissions will continue when the global economy recovers.
اظهر المزيد [+] اقل [-]Health risk assessment of polychlorinated biphenyls (PCBs) in baby clothes. A preliminary study النص الكامل
2022
Herrero, Marta | González, Neus | Rovira, Joaquim | Marquès, Montse | Domingo, José L. | Abalos, Manuela | Abad, Esteban | Nadal, Martí
Clothes may contain a large range of chemical additives and other toxic substances, which may eventually pose a significant risk to human health. Since they are associated with pigments, polychlorinated biphenyls (PCBs) may be especially relevant. On the other hand, infants are very sensitive to chemical exposure and they may wear some contact and colored textiles for a prolonged time. Consequently, a specific human health risk assessment is required. This preliminary study was aimed at analyzing the concentrations of PCBs in ten bodysuits purchased in on-line stores and local retailers. The concentrations of 12 dioxin-like and 8 non-dioxin-like PCB congeners were determined by gas chromatography coupled to high resolution mass spectrometry, with detection limits ranging between 0.01 and 0.13 pg/g. The dermal absorption to PCBs of children at different ages (6 months, 1 year and 3 years old) was estimated, and the non-cancer and cancer risks were evaluated. Total levels of PCBs ranged from 74.2 to 412 pg/g, with a mean TEQ concentration of 13.4 pg WHO-TEQ/kg. Bodysuits made of organic cotton presented a total mean PCB concentration substantially lower than clothes made of regular cotton (11.0 vs. 15.8 pg WHO-TEQ/kg). The dermal absorption to PCBs for infants was calculated in around 3·10⁻⁵ pg WHO-TEQ/kg·day, regardless the age. This value is > 10,000-fold lower than the dietary intake of PCBs, either through breastfeeding or food consumption. Furthermore, this exposure value would not pose any health risks for the infants wearing those bodysuits. Anyhow, as it is a very preliminary study, this should be confirmed by analyzing larger sets of textile samples. Further investigations should be also focused on the co-occurrence of PCBs and other toxic chemicals (i.e., formaldehyde, bisphenols and aromatic amines) in infant clothes.
اظهر المزيد [+] اقل [-]Foliar dust particle retention and metal accumulation of five garden tree species in Hangzhou: Seasonal changes النص الكامل
2022
Dang, Ning | Zhang, Handan | Abdus Salam, Mir Md | Li, Haimei | Chen, Guangcai
As particulate matter and heavy metals in the atmosphere affect the atmospheric quality, they pose a threat to human health through the respiratory system. Vegetation can remove airborne particles and purify the atmosphere. Plant leaves are capable of effectively absorbing heavy metals contained by particulates. To evaluate the effects of different garden plants on the particulate matter retention and heavy metal accumulation, the seasonal changes of dust retention of five typical garden plants were compared in the industrial and non-industrial zones in Hangzhou. Results revealed that these species differed in dust retention with the descending order of Loropetalum chinense > Osmanthus fragrans > Pittosporum tobira > Photinia × fraseri > Cinnamomum camphora, which were related to the microstructure feature of the leaf. These species also showed seasonal variation in dust retention, with the highest in summer, followed by winter, autumn, and spring, respectively. The total suspended particle per unit leaf area was higher in the industrial site (80.54 g m⁻²) than in the non-industrial site (19.77 g m⁻²). Leaf particles in different size fractions differed among species, while coarse particles (d > ten μm) predominated in most cases. The L. chinense and C. camphora plants accumulated the greatest Pb and Ni compared to other plants. Overall, L. chinense was the best suitable plant species to improve the air quality.
اظهر المزيد [+] اقل [-]