خيارات البحث
النتائج 781 - 790 من 4,044
Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China النص الكامل
2016
Liu, Baoshuang | Liang, Danni | Yang, Jiamei | Dai, Qili | Bi, Xiaohui | Feng, Yinchang | Yuan, Jie | Xiao, Zhimei | Zhang, Yufen | Xu, Hong
From November 2014 to October 2015, the concentrations of volatile organic compounds (VOCs), O3 and NOx were simultaneously monitored by using online instruments at the air monitoring station belonged to Tianjin Environmental Protection Bureau (TEPB). The results indicated that VOCs concentrations were higher in autumn and lower in spring, while O3 concentrations were higher in summer, and lower in winter. The diurnal variations of VOCs and NOx (NO2 plus NO) showed opposite tendency comparing to that of O3. The concentrations of alkanes were higher (the average of 18.2 ppbv) than that of aromatics (5.3 ppbv) and alkenes (5.2 ppbv), however, the alkenes and aromatics made larger contributions to ozone because of their high reactivity. Tianjin belonged to the VOC-limited region during most of seasons (except summer) according to the VOC/NOx ratios (the 8:1 threshold). The automobile exhaust, industrial emission, liquefied petroleum gas/natural gas (LPG/NG), combustion, gasoline evaporation, internal combustion engine emission and solvent usage were identified as major sources of VOCs by Positive Matrix Factorization (PMF) model in Tianjin, and the contributions to VOCs for the entire year were 23.1%, 19.9%, 18.6%, 10.6%, 8.7%, 5.4% and 4.7%, respectively. The conditional probability function (CPF) analysis indicated that the contributing directions of automobile exhaust and industrial emission were mainly affected by source distributions, and that of other sources might be mainly affected by wind direction. The backward trajectory analysis indicated that the trajectory of air mass originated from Mongolia, which reflected the features of large-scale and long-distance air transport, and that of beginning in Jiangsu, Shandong and Tianjin, which showed the features of small-scale and short-distance. Tianjin, Beijing, Hebei and Northwest of Shandong were identified as major potential source-areas of VOCs by using potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) models.
اظهر المزيد [+] اقل [-]Evolution of secondary inorganic and organic aerosols during transport: A case study at a regional receptor site النص الكامل
2016
Peng, Jianfei | Hu, Min | Gong, Zhaoheng | Tian, Xudong | Wang, Ming | Zheng, Jing | Guo, Qingfeng | Cao, Wei | Lv, Wei | Hu, Weiwei | Wu, Zhijun | Guo, Song
Understanding the evolution of aerosols in the atmosphere is of great importance for improving air quality and reducing aerosol-related uncertainties in global climate simulations. Here, a unique haze episode at a regional receptor site near the East China Sea was examined as a case study of the aging process of atmospheric aerosols during transport. An increase in photochemical age from 5 h to more than 25 h and a progressive increase in the fitted mean particle diameter from 70 nm to approximately 300 nm were observed. According to the pollution features and meteorology conditions involved, pollution accumulation (PA), sea breeze (SB), and land breeze (LB) periods were identified. Concentrations of black carbon (BC), hydrocarbon-like organic aerosols (HOA), semi-volatile oxidized organic aerosols (SV-OOA), and nitrate increased by 7-fold up to 39-fold when the air masses passed through Taizhou, a nearby city. In addition, nitrate and SV-OOA dominated the aerosol composition in the urban outflow plumes (52% and 18%, respectively), yet they gradually decreased in concentration during transport. In contrast, sulfate and the low-volatile oxidized organic aerosols (LV-OOA) exhibited more regional footprints and potentially have similar formation mechanisms. The atomic oxygen-to-carbon (O/C) ratio also increased from 0.45 to 0.9, thereby suggesting that rapid formation of highly oxidized secondary organic aerosols (SOA) occurred during transport. Overall, these results provide valuable insight into the evolution of the chemical and physical features of aerosol pollution during transport and also highlight the need for regulatory controls of nitrogen oxides, sulfur dioxide, and VOCs to improve air quality on different scales.
اظهر المزيد [+] اقل [-]Combined analysis of trace elements and isotopic composition of particulate organic matter in suspended sediment to assess their origin and flux in a tropical disturbed watershed النص الكامل
2016
Fernandes, Alexandre Martins | Hissler, Christophe | da Conceição, Fabiano Tomazini | Spatti Junior, Eder Paulo | Mortatti, Jefferson
Approximately 40% of the volume of domestic sewage generated in the São Paulo State is untreated and released into water bodies, causing serious pollution problems that affect the water quality and especially the suspended sediments transported by rivers. Thus, this paper investigates the seasonal influence on the origin and fluxes of Cu, Co, Cr, Zn, Cd, Ni, Sc and particulate organic matter (POM) in sediments transported by a disturbed watershed in the São Paulo State, i.e. the Sorocaba River basin. POM was characterized using particulate organic carbon, particulate organic nitrogen, C:N ratio and δ13C and δ15N stable isotopic composition. Eight sample collections of fine suspended sediments (FSS) were carried out at the mouth of the Sorocaba River from July 2009 to May 2010. During the study period, the discharge rate followed the seasonal variation trend of the past 25 years. Zn was the most abundant trace element in the FSS, followed by Cr, Cu, Ni, Co, Sc and Cd. There was a higher concentration of trace elements during the dry season, except for Sc and Co, which did not vary seasonally. The POM showed the same trend, with higher concentrations during the dry season. The calculated enrichment factors and geoaccumulation index indicated that most of the trace elements are of geogenic origin, except for Zn, which showed significant anthropogenic contributions (55%). The elemental and isotopic analysis of C and N and C:N ratio indicated that the anthropogenic origin of POM found in the FSS is related mainly to domestic sewage (97%), while the significant correlation found between the concentrations of Zn and POM indicates that the main anthropogenic source of Zn is related to this domestic sewage. The FSS load transported during the study period was of 373,194 t y−1, of which 87% occurred during the rainy season.
اظهر المزيد [+] اقل [-]High-throughput transcriptome sequencing reveals the combined effects of key e-waste contaminants, decabromodiphenyl ether (BDE-209) and lead, in zebrafish larvae النص الكامل
2016
Chen, Lianguo | Zhu, Biran | Guo, Yongyong | Xu, Tao | Lee, Jae-seong | Qian, Pei-Yuan | Zhou, Bingsheng
PBDEs and heavy metals are two major contaminants at e-waste disposal sites, but their combined effects remain largely unexplored. In the present study, the transcriptomic profiles of zebrafish larvae were examined after acute exposure of embryos to 200 μg/L BDE-209, 20 μg/L lead (Pb) or their mixture (Mix). Stimulation of steroidogenic pathway and vitellogenesis in the BDE-209 and Mix treatments indicated the estrogenic activities of BDE-209, while Pb antagonized those estrogenic effects in the Mix treatment. Increased heart rates were observed in zebrafish exposed to the Pb and Mix treatments. The cardiac dysfunction probably resulted from the promotion of angiogenesis, increased adrenergic drive and induction of the formation of blood clot. Furthermore, the Pb and Mix treatments activated neuroendocrine regulation of the pituitary in a positive feedback loop, via the thyrotropin-releasing hormone receptor, thus increasing thyroid hormone production self-adaptively. Overall, the interaction between BDE-209 and Pb led to synergistic and antagonistic effects on gene transcriptions, with concerted contribution from their individual toxicological properties.
اظهر المزيد [+] اقل [-]Degradation and sorption of the fungicide tebuconazole in soils from golf greens النص الكامل
2016
Badawi, Nora | Rosenbom, Annette E. | Jensen, Anne M.D. | Sørensen, Sebastian R.
The fungicide tebuconazole (TBZ) is used to repress fungal growth in golf greens and ensure their playability. This study determined the degradation and sorption of TBZ applied as an analytical grade compound, a commercial fungicide formulation or in combination with a surfactant product in thatch and soils below two types of greens (USGA and push-up greens) in 12-cm vertical profiles covered by three different types of turf grass. Only minor TBZ degradation was observed and it was most pronounced in treatments with the commercial fungicide product or in combination with the surfactant compared to the analytical grade compound alone. A tendency for higher TBZ sorption when applied as the formulated product and lowest sorption when applied as a formulated product in combination with the surfactant was observed, with this effect being most distinct on USGA greens. No correlation between occurrence of degradation and soil depth, green type or grass type was observed. Sorption seemed to be the main process governing the leaching risk of TBZ from the greens and a positive correlation to the organic matter content was shown. In light of these findings, organic matter content should be taken into consideration during the construction of golf courses, especially when following USGA guidelines.
اظهر المزيد [+] اقل [-]The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil النص الكامل
2016
Zhu, Xuejiao | Li, Weila | Zhan, Lu | Huang, Minsheng | Zhang, Qiuzhuo | Achal, Varenyam
Microbial carbonate precipitation is known as an efficient process for the remediation of heavy metals from contaminated soils. In the present study, a urease positive bacterial isolate, identified as Bacillus cereus NS4 through 16S rDNA sequencing, was utilized on a large scale to remove nickel from industrial soil contaminated by the battery industry. The soil was highly contaminated with an initial total nickel concentration of approximately 900 mg kg−1. The soluble-exchangeable fraction was reduced to 38 mg kg−1 after treatment. The primary objective of metal stabilization was achieved by reducing the bioavailability through immobilizing the nickel in the urease-driven carbonate precipitation. The nickel removal in the soils contributed to the transformation of nickel from mobile species into stable biominerals identified as calcite, vaterite, aragonite and nickelous carbonate when analyzed under XRD. It was proven that during precipitation of calcite, Ni2+ with an ion radius close to Ca2+ was incorporated into the CaCO3 crystal. The biominerals were also characterized by using SEM-EDS to observe the crystal shape and Raman-FTIR spectroscopy to predict responsible bonding during bioremediation with respect to Ni immobilization. The electronic structure and chemical-state information of the detected elements during MICP bioremediation process was studied by XPS. This is the first study in which microbial carbonate precipitation was used for the large-scale remediation of metal-contaminated industrial soil.
اظهر المزيد [+] اقل [-]Plant community and litter composition in temperate deciduous woodlots along two field gradients of soil Ni, Cu and Co concentrations النص الكامل
2016
Hale, Beverley | Robertson, Paul
Perennial plant communities in the proximity of metal smelters and refineries may receive substantial inputs of base metal particulate as well as sulphate from the co-emission of sulphur dioxide. The Ni refinery at Port Colborne (Canada) operated by Inco (now Vale Canada Ltd.) emitted Ni, Co and Cu, along with sulphur dioxide, between 1918 and 1984. The objectives were to determine if vascular plant community composition, including standing litter, in twenty-one woodlots on clay or organic soil, were related to soil Ni concentration which decreased in concentration with distance from the Ni refinery. The soil Ni concentration in the clay woodlots ranged from 16 to 4130 mg Ni/kg, and in the organic woodlots, ranged from 98 to 22,700 mg Ni/kg. The concentrations of Co and Cu in the soils were also elevated, and highly correlated with soil Ni concentration. In consequence, each series of woodlots constituted a ‘fixed ratio ray’ of metal mixture exposure. For each of the woodlots, there were 16 independent measurements of ‘woodlot status’ which were correlated with elevated soil Ni concentration. Of the 32 combinations, there were eight linear correlations with soil Ni concentration, considerably more than would be expected by chance alone at a p-value of 0.05. With the exception of mean crown rating for shrubs at the clay sites, the correlations were consistent with the hypothesis that increased soil metal concentrations would be correlated with decreased diversity, plant community health or fitness, and increased accumulation of litter. Only five of the eight linear correlations were from the organic woodlots, suggesting that the observations were not confounded with soil type nor range in soil metal concentrations.
اظهر المزيد [+] اقل [-]Influence of different types of coals and stoves on the emissions of parent and oxygenated PAHs from residential coal combustion in China النص الكامل
2016
Wang, Yan | Xu, Yue | Chen, Yingjun | Tian, Chongguo | Feng, Yanli | Chen, Tian | Li, Jun | Zhang, Gan
To evaluate the influence of coal property and stove efficiency on the emissions of parent polycyclic aromatic hydrocarbons (pPAHs) and oxygenated PAHs (oPAHs) during the combustion, fifteen coal/stove combinations were tested in this study, including five coals of different geological maturities in briquette and chunk forms burned in two residential stoves. The emission factors (EFs) of pPAHs and oPAHs were in the range of 0.129–16.7 mg/kg and 0.059–0.882 mg/kg, respectively. The geological maturity of coal significantly affected the emissions of pPAHs and oPAHs with the lower maturity coals yielding the higher emissions. The chunk-to-briquette transformation of coal dramatically increased the emissions of pPAHs and oPAHs during the combustion of anthracite, whereas this transformation only elevated the emissions of high molecular weight PAHs for bituminous coals. The influence of stove type on the emissions of pPAHs and oPAHs was also geological-maturity-dependent. High efficiency stove significantly reduced the emissions of PAHs from those relatively high-maturity coals, but its influences on low-maturity coals were inconstant.
اظهر المزيد [+] اقل [-]Pulsation effects on pollutant and sediment transport in free-surface flow النص الكامل
2016
Khaldi, Nawel | Chouari, Yoldoss | Mhiri, Hatem | Bournot, Philippe
A series of numerical simulations are performed to study the pollutant and sediment transport in free surface channel flow. The present paper examines the dispersion of passive contaminants injected from a time periodic source in a fully developed turbulent flow. More precisely, the pulsation effects on the distribution behaviors of dissolved and particulate pollutants are analyzed and discussed. Simulations are carried out using a commercial Computational Fluid Dynamic (CFD) code, Fluent 6.3, which is based on the finite volume approach. The standard k−ε turbulence closure model is selected to simulate the turbulence generation and the Volume of Fluid (VOF) method is used to accurately capture the time varying free surface. The Discrete Phase Model (DPM) is used for capturing the movement of particles. Numerical results show that increasing pulsation amplitude and decreasing frequency generates higher dispersive effects in the concentration profiles of a dissolved pollutant. It is also concluded that, unlike dissolved substances, the particle transportation can be enhanced only for certain combinations of the pulsation amplitude and frequency due to the synchronization of the particle’s movement with the oscillating potential.•Increasing pulsation amplitude and decreasing frequency generates higher dispersive effects.•Particle transportation can be enhanced only for certain amplitude-frequency combinations.
اظهر المزيد [+] اقل [-]The influence of atmospheric particles on the elemental content of vegetables in urban gardens of Sao Paulo, Brazil النص الكامل
2016
Amato-Lourenco, Luís Fernando | Moreira, Tiana Carla Lopes | de Oliveira Souza, Vanessa Cristina | Barbosa, Fernando | Saiki, Mitiko | Saldiva, Paulo H. N. (Paulo Hilário Nascimento) | Mauad, Thais
Although urban horticulture provides multiple benefits to society, the extent to which these vegetables are contaminated by the absorption of chemical elements derived from atmospheric deposition is unclear. This study was designed to evaluate the influence of air pollution on leafy vegetables in community gardens of Sao Paulo, Brazil. Vegetable seedlings of Brassica oleracea var. acephala (collard greens) and Spinacia oleracea (spinach) obtained in a non-polluted rural area and growing in vessels containing standard uncontaminated soil were exposed for three consecutive periods of 30, 60 and 90 days in 10 community gardens in Sao Paulo and in one control site. The concentrations of 17 chemical elements (traffic-related elements and those essential to plant biology) were quantified by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Tillandsia usneoides L. specimens were used as air plant biomonitors. The concentrations of As, Cd, Cr and Pb found in vegetables were compared to the recommended values for consumption. Principal Component Analysis (PCA) was used to cluster the elemental concentrations, and Generalized Linear Models (GLMs) were employed to evaluate the association of the factor scores from each PCA component with variables such as local weather, traffic burden and vertical barriers adjacent to the gardens. We found significant differences in the elemental concentrations of the vegetables in the different community gardens. These differences were related to the overall traffic burden, vertical obstacles and local weather. The Pb and Cd concentrations in both vegetables exceeded the limit values for consumption after 60 days of exposure. A strong correlation was observed between the concentration of traffic-related elements in vegetables and in Tillandsia usneoides L. An exposure response was observed between traffic burden and traffic-derived particles absorbed in the vegetables. Traffic-derived air pollution directly influences the absorption of chemical elements in leafy vegetables, and the levels of these elements may exceed the recommended values for consumption.
اظهر المزيد [+] اقل [-]