خيارات البحث
النتائج 781 - 790 من 7,292
Pesticides in doormat and floor dust from homes close to treated fields: Spatio-temporal variance and determinants of occurrence and concentrations النص الكامل
2022
Figueiredo, Daniel | Nijssen, Rosalie | J.M. Krop, Esmeralda | Buijtenhuijs, Daan | Gooijer, Yvonne | Lageschaar, Luuk | Duyzer, Jan | Huss, Anke | Mol, Hans | C.H. Vermeulen, Roel
Indoor dust has been postulated as an important matrix for residential pesticide exposure. However, there is a lack of information on presence, concentrations and determinants of multiple pesticides in dust in residential homes close to treated fields. Our objective was to characterize the spatial and temporal variance of pesticides in house dust, study the use of doormats and floors as proxies for pesticides in indoor dust and identify determinants of occurrence and concentrations. Homes within 250 m from selected bulb fields were invited to participate. Homes within 20 km from these fields but not having agricultural fields within 500 m were selected as controls. House dust was vacuumed in all homes from floors (VFD) and from newly placed clean doormats (DDM). Sampling was done during two periods, when pesticides are used and not-used. For determination of 46 prioritized pesticides, a multi-residue extraction method was used. Most statistical analyses are focused on the 12 and 14 pesticides that were detected in >40% of DDM and VFD samples, respectively. Mixed models were used to evaluate relationships between possible determinants and pesticides occurrence and concentrations in DDM and VFD. 17 pesticides were detected in more than 50% of the homes in both matrixes. Concentrations differed by about a factor five between use and non-use periods among homes within 250 m of fields and between these homes and controls. For 7 pesticides there was a moderate to strong correlation (Spearman rho 0.30–0.75) between concentrations in DDM and VFD. Distance to agricultural fields and air concentrations were among the most relevant predictors for occurrence and levels of a given pesticide in DDM. Concentrations in dust are overall higher during application periods and closer to fields (<250 m) than further away. The omnipresence of pesticides in dust lead to residents being exposed all year round.
اظهر المزيد [+] اقل [-]Characterisation of plasmatic B-esterases in bottlenose dolphins (Tursiops truncatus) and their potential as biomarkers of xenobiotic chemical exposures النص الكامل
2022
Solé, M. | Figueres, E. | Mañanós, E. | Rojo-Solís, C. | García-Párraga, D.
A total of 164 blood samples from 16 clinically healthy bottlenose dolphins (Tursiops truncatus), were obtained from an aquarium in Spain between 2019 and 2020, as part of their preventive medicine protocol. In addition to conventional haematological and biochemical analyses, plasmatic B-esterase activities were characterised to determine the potential application of such analyses in wild counterparts. The hydrolysis rates for the substrates of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and carboxylesterase (CE) activity in plasma were measured, the last using two commercial substrates, p-nitrophenyl acetate (pNPA) and p-nitrophenyl butyrate (pNPB). Activity rates (mean ± SEM in nmol/min/mL plasma) were (in descending order): AChE (125.6 ± 3.8), pNPB-CE (65.0 ± 2.2), pNPA-CE (49.7 ± 1.1) and BuChE (12.8 ± 1.3). These values for dolphins are reported in here for the first time in this species. Additionally, the in vitro sensitivity of two B-esterases (AChE and pNPB-CE) to chemicals of environmental concern was determined, and the protective role of plasmatic albumin assessed. Out of the B-esterases measured in plasma of dolphin, AChE activity was more responsive in vitro to pesticides, while CEs had a low response to plastic additives, likely due to the protective presence of albumin. However, the clear in vitro interaction of these environmental chemicals with purified AChE from electric eels and recombinant human hCEs (hCE1 and hCE2) and albumin, predicts their impact in other tissues that require in vivo validation. A relationship between esterase-like activities and health parameters in terrestrial mammals has already been established. Thus, B-esterase measures could be easily included in marine mammal health assessment protocols for dolphins as well, once the relationship between these measures and the animal's fitness has been established.
اظهر المزيد [+] اقل [-]Novel methodology for identification and quantification of microplastics in biological samples النص الكامل
2022
Malafaia, Guilherme | da Luz, Thiarlem Marinho | Araújo, Amanda Pereira da Costa | Ahmed, Mohamed Ahmed Ibrahim | Rocha-Santos, Teresa | Barceló, Damià
Currently, the evidence of the ingestion of microplastics (MPs) by organisms or the accumulation in different environmental compartments has been achieved using several methodological procedures. However, its uses have not been standardized across studies. In this study, we aim to assess and validate a protocol that can be useful for optimizing the identification and quantification procedures of polyethylene microplastics (PE MPs) in biological samples. Initially, considering that numerous studies filter samples previously digested in cellulosic membranes for isolation and analysis of MPs, we evaluated whether washing these membranes with different reagents could contribute to the complete detachment of particles, as well as to their dispersion in the obtained solutions. However, none of the tested reagents (dimethyl sulfoxide, acetone, ethyl alcohol and chloroform), including purified water, was able to completely remove the MPs adhered to the membranes or facilitate their dispersion in the solutions. On the other hand, we observed that the digestion of the membranes by acetonitrile constituted a procedure that prevents the loss of particles due to adherence, in addition to promoting good dispersion of MPs. Subsequently, we evaluated the use of Neubauer chambers for the quantification of MPs, having observed a good recovery rate (>92%) and results with insignificant variation, in PE MPs solutions with different concentrations (0.15; 0.075 and 0.0375 mg/mL). Ultimately, the validation of the proposed procedures took place from the evaluation of the accumulation of PE MPs in Astyanax spp. juveniles, having demonstrated the efficiency and sensitivity of the method proposed for this purpose. Subsequently, our study provides a methodological alternative that can optimize MPs quantifications in biological samples and reduce the generation of biased or unreliable results.
اظهر المزيد [+] اقل [-]Spatial variations in winter Hg contamination affect egg volume in an Arctic seabird, the great skua (Stercorarius skua) النص الكامل
2022
Céline, Albert | Hallvard, Strøm | Helgi, Helgason Hálfdán | Sandøy, Bråthen Vegard | Theyr, Gudmundsson Fannar | Paco, Bustamante | Jérôme, Fort
Knowledge of the ecology and at-sea distribution of migratory species like seabirds has substantially increased over the last two decades. Furthermore, an increasing number of studies have recently focused on chemical contamination of birds over their annual cycle. However, the understanding of the combined effects of spatial movements and contamination on seabirds’ life-history traits is still scarce. During winter, seabirds can use very different areas, at the large-scale. Such overwintering strategies and distribution may expose individuals to contrasting environmental stressors, including pollutants. Here, we studied the winter distribution and contamination with mercury (Hg), and their combined effects on reproduction, in a great skua (Stercorarius skua) population breeding in Bjørnøya, Svalbard. We confirmed that individuals of this specific population overwinter in three different areas of the North Atlantic, namely Africa, Europe and northwest Atlantic. The highest Hg concentrations in feathers were measured in great skuas wintering off Europe (Linear Mixed Models - mean value ± SD = 10.47 ± 3.59 μg g ⁻¹ dw), followed by skuas wintering in northwest Atlantic (8.42 ± 3.70) and off Africa (5.52 ± 1.83). Additionally, we found that female winter distribution and accumulated Hg affected the volume of their eggs (Linear Mixed Models), but not the number of laid and hatched eggs (Kruskal-Wallis tests). This study provides new insights on the contamination risks that seabirds might face according to their overwinter distribution and the possible associated carry-over effects.
اظهر المزيد [+] اقل [-]Time-series incubations in a coastal environment illuminates the importance of early colonizers and the complexity of bacterial biofilm dynamics on marine plastics النص الكامل
2022
Lemonnier, C. | Chalopin, M. | Huvet, A. | Le Roux, F. | Labreuche, Y. | Petton, B. | Maignien, L. | Paul-Pont, I. | Reveillaud, J.
The problematic of microplastics pollution in the marine environment is tightly linked to their colonization by a wide diversity of microorganisms, the so-called plastisphere. The composition of the plastisphere relies on a complex combination of multiple factors including the surrounding environment, the time of incubation along with the polymer type, making it difficult to understand how the biofilm evolves during the microplastic lifetime over the oceans. To better define bacterial community assembly processes on plastics, we performed a 5 months spatio-temporal survey of the plastisphere in an oyster farming area in the Bay of Brest (France). We deployed three types of plastic pellets in two positions in the foreshore and in the water column. Plastic-associated biofilm composition in all these conditions was monitored using 16 S rRNA metabarcoding and compared to free-living and attached bacterial members of seawater. We observed that bacterial families associated to plastic pellets were significantly distinct from the ones found in seawater, with a significant prevalence of filamentous Cyanobacteria on plastics. No convergence towards a unique plastisphere was detected between polymers exposed in the intertidal and subtidal area, emphasizing the central role of the surrounding environment on constantly shaping the plastisphere community diversity. However, we could define a bulk of early-colonizers of marine biofilms such as Alteromonas, Pseudoalteromonas or Vibrio. These early-colonizers could reach high abundances in floating microplastics collected in field-sampling studies, suggesting the plastic-associated biofilms could remain at early development stages across large oceanic scales. Our study raises the hypothesis that most members of the plastisphere, including putative pathogens, could result of opportunistic colonization processes and unlikely long-term transport.
اظهر المزيد [+] اقل [-]Organ-specific accumulation of cadmium and zinc in Gammarus fossarum exposed to environmentally relevant metal concentrations النص الكامل
2022
Gestin, Ophélia | Lopes, Christelle | Delorme, Nicolas | Garnero, Laura | Geffard, Olivier | Lacoue-Labarthe, Thomas
One of the best approaches for improving the assessment of metal toxicity in aquatic organisms is to study their organotropism (i.e., the distribution of metals among organs) through a dynamical approach (i.e., via kinetic experiments of metal bioaccumulation), to identify the tissues/organs that play a key role in metal regulation (e.g., storage or excretion). This study aims at comparing the organ-specific metal accumulation of a non-essential (Cd) and an essential metal (Zn), at their environmentally relevant exposure concentrations, in the gammarid Gammarus fossarum. Gammarids were exposed for 7 days to ¹⁰⁹Cd- or ⁶⁵Zn-radiolabeled water at a concentration of 52.1 and 416 ng.L⁻¹ (stable equivalent), respectively, and then placed in clean water for 21 days. At different time intervals, the target organs (i.e., caeca, cephalons, intestines, gills, and remaining tissues) were collected and ¹⁰⁹Cd or ⁶⁵Zn contents were quantified by gamma-spectrometry. A one-compartment toxicokinetic (TK) model was fitted by Bayesian inference to each organ/metal dataset in order to establish TK parameters. Our results indicate: i) a contrasting distribution pattern of concentrations at the end of the accumulation phase (7ᵗʰ day): gills > caeca ≈ intestines > cephalons > remaining tissues for Cd and intestines > caeca > gills > cephalons > remaining tissues for Zn; ii) a slower elimination of Cd than of Zn by all organs, especially in the gills in which the Cd concentration remained constant during the 21-day depuration phase, whereas Zn concentrations decreased sharply in all organs after 24 h in the depuration phase; iii) a major role of intestines in the uptake of waterborne Cd and Zn at environmentally relevant concentrations.
اظهر المزيد [+] اقل [-]Binding, recovery, and infectiousness of enveloped and non-enveloped viruses associated with plastic pollution in surface water النص الكامل
2022
Moresco, Vanessa | Charatzidou, Anna | Oliver, David M. | Weidmann, Manfred | Matallana-Surget, Sabine | Quilliam, Richard S.
Microplastics in wastewater and surface water rapidly become colonised by microbial biofilm. Such ‘plastisphere’ communities are hypothesised to persist longer and be disseminated further in the environment and may act as a vector for human pathogens, particularly as microplastics entering wastewater treatment plants are exposed to high concentrations of pathogenic bacteria. However, the potential for human viral pathogens to become associated with the plastisphere has never before been quantified. Here, we have used rotavirus (RV) SA11 (a non-enveloped enteric virus) and the enveloped bacteriophage Phi6 as model viruses to quantify binding and recovery from biofilm-colonised microplastic pellets in three different water treatments (filtered and non-filtered surface water, and surface water with added nutrients). Viruses associated with biofilm-colonised pellets were more stable compared to those remaining in the water. While infectious particles and genome copies of RV remained stable over the 48 h sampling period, Phi6 stability was highly impacted, with a reduction ranging from 2.18 to 3.94 log₁₀. Virus particles were protected against inactivation factors when associated with the biofilm on microplastic surfaces, and when there was a high concentration of particulate matter in the liquid phase. Although our results suggest that the presence of an envelope may limit virus interaction with the plastisphere, the ability to recover both enveloped and non-enveloped infectious viruses from colonised microplastic pellets highlights an additional potential public health risk of surface waters becoming contaminated with microplastics, and subsequent human exposure to microplastics in the environment.
اظهر المزيد [+] اقل [-]Metal bioavailable contamination engages richness decline, species turnover but unchanged functional diversity of stream macroinvertebrates at the scale of a French region النص الكامل
2022
Alric, Benjamin | Geffard, Olivier | Chaumot, Arnaud
Freshwater ecosystems are the main source of water for sustaining life on earth, and the biodiversity they support is the main source of valuable goods and services for human populations. Despite growing recognition of the impairment of freshwater ecosystems by micropollutant contamination, different conceptual and methodological considerations can newly be addressed to improve our understanding of the ecological impact into these ecosystems. Here, we originally combined in situ ecotoxicology and community ecology concepts to unveil the mechanisms structuring macroinvertebrate communities along a regional contamination gradient. The novelty of our study lies in the use of an innovative biomonitoring approach (measurement of metal contents in caged crustaceans) allowing to quantify and compare on a regional scale the levels of bioavailable metal contamination to which stream communities are exposed. We were hence able to identify 23 streams presenting a significant gradient of bioavailable metal contamination within the same catchment area in the South West of France, from which we also obtained data on the composition of resident macroinvertebrate communities. Analyses of structural and functional integrity of communities revealed an unexpected decoupling between taxonomic and functional diversity of communities in response to bioavailable metal contamination. We show that despite the negative impact of bioavailable metal contamination exposure on taxonomic diversity (with an average species loss of 17% in contaminated streams), functional diversity is maintained through a process of non-random species replacement by functional redundant species at the regional scale. Such unanticipated findings call for a deeper characterization of metal-tolerant communities’ ability to cope with environmental variability in multi-stressed ecosystems.
اظهر المزيد [+] اقل [-]Influence of edaphic conditions and persistent organic pollutants on earthworms in an infiltration basin النص الكامل
2022
Fernandes, G. | Roques, O. | Lassabatère, L. | Sarles, L. | Venisseau, A. | Marchand, P. | Bedell, J.-P.
In recent decades, stormwater management has developed to allow stormwater to infiltrate directly into the soils instead of being collected and routed to sewer systems. However, during infiltration, stormwater creates a sediment deposit at the soil surface as the result of high loads of suspended particles (including pollutants), leading to the settlement of sedimentary layers prone to colonization by plants and earthworms. This study aims to investigate the earthworm communities of a peculiar infiltration basin and investigate the influence of edaphic conditions (water content, organic matter content, pH, height of sediment) and of persistent organic pollutants (POPs: PCBs, PCDDs and PCDFs) on these earthworms. Attention was paid to their age (juveniles or adults) and their functional group (epigeic, endogeic, anecic). We found that the earthworm abundance was mostly driven by edaphic conditions, with only a slight impact of POPs, with a significant negative impact of PCBDLno for juveniles and endogeic, and PCDDs for epigeic. On the contrary, the height of the sediment and the water content are beneficial for their presence and reproduction. Furthermore, POPs contents are also linked to physicochemical parameters of the sediment. Bioaccumulation was clearly revealed in the studied site but does not differ between juveniles and adults, except for PCDDs. Conversely, BAF values seemed to vary between functional groups, except for PCBDL non-ortho. It strongly varies with the family types (PCBs versus PCCD/Fs) and between congeners within the same family, with specific strong bioaccumulation for a few congeners.
اظهر المزيد [+] اقل [-]Negative food dilution and positive biofilm carrier effects of microplastic ingestion by D. magna cause tipping points at the population level النص الكامل
2022
Amariei, G. | Rosal, Roberto | Fernandez-Pinas, Francisca | Koelmans, A.A.
Ingestion of microplastics by aquatic organisms is often harmful due to the dilution of their regular food with low-calorie microplastic particles, but can also be beneficial if nutritious biofilms are present on the microplastic surface. This begs the question: is ingestion of microplastic harmful or beneficial and can the net effect of the two mechanisms be quantified? Here, we quantified these harmful and beneficial effects on Daphnia magna, using dose-response tests with clean and biofouled microplastic respectively, and determined the trade-off between these counteracting effects. A population model was developed to calculate the isoclines for zero population growth, separating the regime where adverse food dilution dominated from that where the beneficial biofilm vector mechanism dominated. Our results show that the organisms grew better when exposed to biofouled microplastic compared to pristine microplastic. Very good model predictions (R2 = 0.868–0.991) of the effects of biofouled microplastic were obtained based on literature parameter values, with optimization required only for the two sub-model parameters driving the dose-effect relationships for pristine microplastic. These results contradict previous sudies were only pristine microplastic were used and demonstrate that the ruling paradigm of unambiguously adverse microplastic effects is not ecologically justifiable.
اظهر المزيد [+] اقل [-]