خيارات البحث
النتائج 791 - 800 من 4,038
Effects of seasonal hypoxia on the release of phosphorus from sediments in deep-water ecosystem: A case study in Hongfeng Reservoir, Southwest China النص الكامل
2016
Wang, Jingfu | Chen, Jingan | Ding, Shiming | Guo, Jianyang | Christopher, Dallimore | Dai, Zhihui | Yang, Haiquan
Using the diffusive gradients in thin films (DGT) technique and microelectrode technique, hypoxia and its effects on the release of phosphorus (P) from sediments were carefully investigated in Hongfeng Reservoir, a typical deep-water ecosystem where eutrophication and hypoxia is still an environmental challenge in Southwest China. The results suggested that hypoxia significantly promotes the release of P from sediments and the release of P under hypoxic condition mostly comes from the release of BD–P. Together with the in-situ and high resolution evidences from DGT and microelectrode, the release of P from sediments under hypoxic condition was assumed to be coupled processes which are associated with the combined cycles of “P-Fe-S”. Evidences from the present work implied that the internal P-loadings induced by hypoxia, especially after a reduction of external P-loading, should be paid more attention in eutrophic deep-water reservoirs, Southwest China.
اظهر المزيد [+] اقل [-]Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations النص الكامل
2016
Hu, Yuanan | Cheng, Hefa
Coal burning in power plants and industrial boilers is the largest combustion source of mercury emissions in China. Together, power plants and industrial boilers emit around 250 tonnes of mercury each year, or around half of atmospheric mercury emissions from anthropogenic sources in the country. Power plants in China are generally equipped with multi-pollutant control technologies, which offer the co-benefit of mercury removal, while mercury-specific control technologies have been installed in some facilities. In contrast, most industrial boilers have only basic or no flue gas cleaning. A combination of measures, including energy conservation, coal switching and blending, reducing the mercury contents of coals through washing, combustion controls, and flue gas cleaning, can be used to reduce mercury emissions from these stationary combustion sources. More stringent emission standards for the major air pollutants from coal-fired power plants and industrial boiler, along with standards for the previously unregulated mercury, were implemented recently, which is expected to bring significant reduction in their mercury emissions through the necessary upgrades of multi-pollutant and mercury-specific control technologies. Meanwhile, strong monitoring capacity and strict enforcement are necessary to ensure that the combustion sources operate in compliance with the new emission standards and achieve significant reduction in the emissions of mercury and other air pollutants.
اظهر المزيد [+] اقل [-]Coupled production and emission of short chain perfluoroalkyl acids from a fast developing fluorochemical industry: Evidence from yearly and seasonal monitoring in Daling River Basin, China النص الكامل
2016
Wang, Pei | Lü, Yonglong | Wang, Tieyu | Zhu, Zhaoyun | Li, Qifeng | Meng, Jing | Su, Hongqiao | Johnson, Andrew C. | Sweetman, A. J. (Andrew J.)
Short chain perfluoroalkyl acids (PFAAs) have been developed since 2002 by the major manufacturers to replace the conventional C8 and higher homologues, with much of the world production shifted to China in recent years. In this study, we conducted a continuous monitoring program over the period 2011–2014 with seasonal monitoring in 2013 for PFAAs emitted from two rapidly developing fluorochemical industry parks located in the Daling River Basin, Northern China. The trend of PFAA contamination was identified, dominated by perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA), with the maximum concentrations of 3.78 μg/L, 3.70 μg/L, and 1.95 μg/L, respectively. Seasonal monitoring uncovered the occasional emission of perfluorooctane sulfonic acid (PFOS). Construction trends of new facilities and associated manufacturing capacity of the main products were also analyzed to assess correlations with PFAA emissions. An assessment of the data over the period 2011–2014 found a positive correlation with fluorocarbon alcohol (FCA) production and emission of PFAAs. Groundwater and tap water around the main source indicated that the dominant PFAAs had different diffusion behaviors. PFBS levels were higher in surface water, while PFBA was dominant in groundwater and tap water, with PFOA levels being higher in downstream groundwater. Considering the continuous expansion and development of fluorochemical industry in the Daling River Basin, this study will provide abundant information on the effectiveness of risk assessment and management.
اظهر المزيد [+] اقل [-]Homeostatic regulation of copper in a marine fish simulated by a physiologically based pharmacokinetic model النص الكامل
2016
Wang, Xun | Wang, Wen-Xiong
Copper (Cu) is an essential yet potentially toxic metal, thus delicate homeostatic controls are developed in the fish. In this study, a physiologically based pharmacokinetic (PBPK) model was developed to simulate the homeostatic regulation of Cu in a marine fish (Terapon jarbua) under dietary and waterborne exposures. In this model, fish were schematized as a six-compartment model, with the intestine being divided into two sub-compartments (chyme and gut wall). The blood was assumed to be the “carrier” distributing Cu into different compartments. The transfer rates between different compartments were determined in fish during Cu exposure (20 d) and depuration (20 d). The differences in Cu transfer from chyme to gut wall between dietary and waterborne treatments suggested that the intestine regulated the dietary uptake and re-absorption of Cu from the chyme. The extremely low uptake rate constant (0.0013 d−1) for gills under waterborne exposure indicated that gills strongly restricted Cu uptake from the ambient water. For both treatments, the liver had considerable input rate through the enterohepatic circulation and comparably high exchange rate with the blood, suggesting that the liver can efficiently accumulate newly absorbed Cu. The differences in Cu output from the liver between dietary and waterborne treatments suggested that it can effectively regulate the redistribution of Cu. All of these observations demonstrated that the liver played the central role in Cu homeostasis by serving as the main depository and distributing center. Modeling results also indicated that renal and branchial excretion was of minor importance, whereas biliary excretion combined with defecation played the most important role in whole-body Cu elimination in marine fish. The effective regulation by the “Blood-Liver-Intestine” cycle could be the main reason for the relatively low levels of Cu in fish.
اظهر المزيد [+] اقل [-]Best options for the exposure of traditional and innovative moss bags: A systematic evaluation in three European countries النص الكامل
2016
Capozzi, F. | Giordano, S. | Aboal, J.R. | Adamo, P. | Bargagli, R. | Boquete, T. | Di Palma, A. | Real, C. | Reski, R. | Spagnuolo, V. | Steinbauer, K. | Tretiach, M. | Varela, Z. | Zechmeister, H. | Fernández, J.A.
To develop an internationally standardized protocol for the moss bag technique application, the research team participating in the FP7 European project “MOSSclone” focused on the optimization of the moss bags exposure in terms of bag characteristics (shape of the bags, mesh size, weight/surface ratio), duration and height of exposure by comparing traditional moss bags to a new concept bag, “Mossphere”. In particular, the effects of each variable on the metal uptake from the air were evaluated by a systematic experimental design carried out in urban, industrial, agricultural and background areas of three European countries with oceanic, Mediterranean and continental climate. The results evidenced that the shape, the mesh size of the bags and the exposure height (in the tested ranges), did not significantly influence the uptake capacity of the transplanted moss. The aspects more affecting the element uptake were represented by the density of the moss inside the bags and the relative ratio between its weight and the surface area of the bag. We found that, the lower the density, the higher the uptake recorded. Moreover, three weeks of exposure were not enough to have a consistent uptake signal in all the environments tested, thus we suggest an exposure period not shorter than 6 weeks, which is appropriate in most situations. The above results were confirmed in all the countries and scenarios tested. The adoption of a shared exposure protocol by the research community is strongly recommended since it is a key aspect to make biomonitoring surveys directly comparable, also in view of its recognition as a monitoring method by the EU legislation.
اظهر المزيد [+] اقل [-]COSMOS-rice technology abrogates the biotoxic effects of municipal solid waste incinerator residues النص الكامل
2016
Guarienti, Michela | Cardozo, Sdenka Moscoso | Borgese, Laura | Lira, Gloria Rodrigo | Depero, Laura E. | Bontempi, Elza | Presta, Marco
Fly ashes generated by municipal solid waste incinerator (MSWI) are classified as hazardous waste and usually landfilled. For the sustainable reuse of these materials is necessary to reduce the resulting impact on human health and environment. The COSMOS-rice technology has been recently proposed for the treatment of fly ashes mixed with rice husk ash, to obtain a low-cost composite material with significant performances. Here, aquatic biotoxicity assays, including daphnidae and zebrafish embryo-based tests, were used to assess the biosafety efficacy of this technology. Exposure to lixiviated MSWI fly ash caused dose-dependent biotoxic effects on daphnidae and zebrafish embryos with alterations of embryonic development, teratogenous defects and apoptotic events. On the contrary, no biotoxic effects were observed in daphnidae and zebrafish embryos exposed to lixiviated COSMOS-rice material. Accordingly, whole-mount in situ hybridization analysis of the expression of various tissue-specific genes in zebrafish embryos provided genetic evidence about the ability of COSMOS-rice stabilization process to minimize the biotoxic effects of MSWI fly ash. These results demonstrate at the biological level that the newly developed COSMOS-rice technology is an efficient and cost-effective method to process MSWI fly ash, producing a biologically safe and reusable material.
اظهر المزيد [+] اقل [-]Quantification of vehicle fleet PM10 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques النص الكامل
2016
Lawrence, Samantha | Sokhi, Ranjeet | Ravindra, Khaiwal
Road tunnels act like large laboratories; they provide an excellent environment to quantify atmospheric particles emission factors from exhaust and non-exhaust sources due to their known boundary conditions. Current work compares the High Volume, Dichotomous Stacked Filter Unit and Partisol Air Sampler for coarse, PM10 and PM2.5 particle concentration measurement and found that they do not differ significantly (p = 95%). PM2.5 fraction contributes 66% of PM10 proportions and significantly influenced by traffic (turbulence) and meteorological conditions. Mass emission factors for PM10 varies from 21.3 ± 1.9 to 28.8 ± 3.4 mg/vkm and composed of Motorcycle (0.0003–0.001 mg/vkm), Cars (26.1–33.4 mg/vkm), LDVs (2.4–3.0 mg/vkm), HDVs (2.2–2.8 mg/vkm) and Buses (0.1 mg/vkm). Based on Lawrence et al. (2013), source apportionment modelling, the PM10 emission of brake wear (3.8–4.4 mg/vkm), petrol exhaust (3.9–4.5 mg/vkm), diesel exhaust (7.2–8.3 mg/vkm), re-suspension (9–10.4 mg/vkm), road surface wear (3.9–4.5 mg/vkm), and unexplained (7.2 mg/vkm) were also calculated. The current study determined that the combined non-exhaust fleet PM10 emission factor (16.7–19.3 mg/vkm) are higher than the combined exhaust emission factor (11.1–12.8 mg/vkm). Thus, highlight the significance of non-exhaust emissions and the need for legislation and abatement strategies to reduce their contributions to ambient PM concentrations.
اظهر المزيد [+] اقل [-]Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area النص الكامل
2016
Cejpková, Jaroslava | Gryndler, Milan | Hršelová, Hana | Kotrba, Pavel | Řanda, Zdeněk | Synková, Iva | Borovička, Jan
Ectomycorrhizal (ECM) fungi contribute to the survival of host trees on metal-rich soils by reducing the transfer of toxic metals into roots. However, little is known about the ability of ECM fungi to accumulate elements in ectomycorrhizae (ECMs). Here we report Ag, As, Cd, Cl, Cu, Sb, V, and Zn contents in wild-grown Norway spruce ECMs collected in a smelter-polluted area at Lhota near Příbram, Czech Republic. The ECMs data were compared with the element concentrations determined in the corresponding non-mycorrhizal fine roots, soils, and soil extracts. Bioaccumulation factors were calculated to differentiate the element accumulation ability of ECMs inhabited by different mycobionts, which were identified by ITS rDNA sequencing. Among the target elements, the highest contents were observed for Ag, Cl, Cd, and Zn; Imleria badia ECMs showed the highest capability to accumulate these elements. ECMs of Amanita muscaria, but not of other species, accumulated V. The analysis of the proportions of I. badia and A. muscaria mycelia in ECMs by using species-specific quantitative real-time PCR revealed variable extent of the colonization of roots, with median values close to 5% (w/w). Calculated Ag, Cd, Zn and Cl concentrations in the mycelium of I. badia ECMs were 1 680, 1 510, 2 670, and 37,100 mg kg−1 dry weight, respectively, indicating substantial element accumulation capacity of hyphae of this species in ECMs. Our data strengthen the idea of an active role of ECM fungi in soil-fungal-plant interactions in polluted environments.
اظهر المزيد [+] اقل [-]Impact of soil pH and organic matter on the chemical bioavailability of vanadium species: The underlying basis for risk assessment النص الكامل
2016
Reijonen, Inka | Metzler, Martina | Hartikainen, Helinä
The main objective of this study was to unravel the chemical reactions and processes dictating the potential bioavailability of vanadium (V). In environmental solutions V exists in two stable oxidation states, +IV and +V, of which + V is considered to be more toxic. In this study, the effect of speciation and soil pH on the chemical accessibility of V was investigated with two soils: 1) field soil rather rich in soil organic matter (SOM) and 2) coarse mineral soil low in SOM. Fresh soil samples treated with V(+V) (added as NaVO3) or V(+IV) (added as VOSO4) (pH adjusted to the range 4.0–6.9) were incubated for 3 months at 22 °C. The adsorption tendency of V species was explored by water extraction (Milli-Q water, 1:50 dw/V) and by sequential extraction (0.25 M KCl; 0.1 M KH2/K2HPO4; 0.1 M NaOH; 0.25 M H2SO4, 1:10 dw/V). The potential bioavailability of V was found to be dictated by soil properties. SOM reduced V(+V) to V(+IV) and acted as a sorbent for both species, which lowered the bioaccessibility of V. A high pH, in turn, favored the predominance of the V(+V) species and thus increased the chemical accessibility of V.
اظهر المزيد [+] اقل [-]Using devitalized moss for active biomonitoring of water pollution النص الكامل
2016
Debén, S. | Fernández, J.A. | Carballeira, A. | Aboal, J.R.
This paper presents the results of an experiment carried out for the first time in situ to select a treatment to devitalize mosses for use in active biomonitoring of water pollution. Three devitalizing treatments for the aquatic moss Fontinalis antipyretica were tested (i.e. oven-drying at 100 °C, oven-drying with a 50-80-100 °C temperature ramp, and boiling in water), and the effects of these on loss of material during exposure of the transplants and on the accumulation of different heavy metals and metalloids were determined. The suitability of using devitalized samples of the terrestrial moss Sphagnum denticulatum to biomonitor aquatic environments was also tested. The structure of mosses was altered in different ways by the devitalizing treatments. Devitalization by boiling water led to significantly less loss of material (p < 0.01) than the oven-drying treatments. However, devitalization by oven-drying with a temperature ramp yielded more stable results in relation to both loss of material and accumulation of elements. With the aim of standardizing the moss bag technique, the use of F. antipyretica devitalized by oven-drying with a temperature ramp is recommended, rather than other devitalization treatments or use of S. denticulatum.
اظهر المزيد [+] اقل [-]