خيارات البحث
النتائج 821 - 830 من 3,991
Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores
2016
Chekli, L. | Brunetti, G. | Marzouk, E.R. | Maoz-Shen, A. | Smith, E. | Naidu, R. | Shon, H.K. | Lombi, E. | Donner, E.
The use of zero-valent iron nanoparticles (nZVI) has been advocated for the remediation of both soils and groundwater. A key parameter affecting nZVI remediation efficacy is the mobility of the particles as this influences the reaction zone where remediation can occur. However, by engineering nZVI particles with increased stability and mobility we may also inadvertently facilitate nZVI-mediated contaminant transport away from the zone of treatment. Previous nZVI mobility studies have often been limited to model systems as the presence of background Fe makes detection and tracking of nZVI in real systems difficult. We overcame this problem by synthesising Fe-59 radiolabelled nZVI. This enabled us to detect and quantify the leaching of nZVI-derived Fe-59 in intact soil cores, including a soil contaminated by Chromated-Copper-Arsenate. Mobility of a commercially available nZVI was also tested. The results showed limited mobility of both nanomaterials; <1% of the injected mass was eluted from the columns and most of the radiolabelled nZVI remained in the surface soil layers (the primary treatment zone in this contaminated soil). Nevertheless, the observed breakthrough of contaminants and nZVI occurred simultaneously, indicating that although the quantity transported was low in this case, nZVI does have the potential to co-transport contaminants. These results show that direct injection of nZVI into the surface layers of contaminated soils may be a viable remediation option for soils such as this one, in which the mobility of nZVI below the injection/remediation zone was very limited. This Fe-59 experimental approach can be further extended to test nZVI transport in a wider range of contaminated soil types and textures and using different application methods and rates. The resulting database could then be used to develop and validate modelling of nZVI-facilitated contaminant transport on an individual soil basis suitable for site specific risk assessment prior to nZVI remediation.
اظهر المزيد [+] اقل [-]An evaluation of the toxicity and bioaccumulation of bismuth in the coastal environment using three species of macroalga
2016
Kearns, James | Turner, Andrew
Bismuth is a heavy metal whose biogeochemical behaviour in the marine environment is poorly defined. In this study, we exposed three different species of macroalga (the chlorophyte, Ulva lactuca, the phaeophyte, Fucus vesiculosus, and the rhodophyte, Chondrus crispus) to different concentrations of Bi (up to 50 μg L⁻¹) under controlled, laboratory conditions. After a period of 48-h, the phytotoxicity of Bi was measured in terms of chlorophyll fluorescence quenching, and adsorption and internalisation of Bi determined by ICP after EDTA extraction and acid digestion, respectively. For all algae, both the internalisation and total accumulation of Bi were proportional to the concentration of aqueous metal. Total accumulation followed the order: F. vesiculosus > C. crispus > U. lactuca; with respective accumulation factors of about 4200, 1700 and 600 L kg⁻¹. Greatest internalisation (about 33% of total accumulated Bi) was exhibited by C. crispus, the only macroalga to display a phytotoxic response in the exposures. A comparison of the present results with those reported in the literature suggests that Bi accumulation by macroalgae is significantly lower than its accumulation by marine plankton (volume concentration factors of 10⁵ to 10⁷), and that the phytotoxicity of Bi is low relative to other heavy metals like Ag and Tl.
اظهر المزيد [+] اقل [-]Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function
2016
Durenkamp, Mark | Pawlett, Mark | Ritz, K. (Karl) | Harris, Jim A. | Neal, Andrew L. | McGrath, Steve P.
One of the main pathways by which engineered nanoparticles (ENPs) enter the environment is through land application of waste water treatment plant (WWTP) sewage sludges. WWTP sludges, enriched with Ag and ZnO ENPs or their corresponding soluble metal salts during anaerobic digestion and subsequently mixed with soil (targeting a final concentration of 1400 and 140 mg/kg for Zn and Ag, respectively), were subjected to 6 months of ageing and leaching in lysimeter columns outdoors. Amounts of Zn and Ag leached were very low, accounting for <0.3% and <1.4% of the total Zn and Ag, respectively. No differences in total leaching rates were observed between treatments of Zn or Ag originally input to WWTP as ENP or salt forms. Phospholipid fatty acid profiling indicated a reduction in the fungal component of the soil microbial community upon metal exposure. However, overall, the leachate composition and response of the soil microbial community following addition of sewage sludge enriched either with ENPs or metal salts was very similar.
اظهر المزيد [+] اقل [-]Toxicity assessment of perfluorooctane sulfonate using acute and subchronic male C57BL/6J mouse models
2016
Xing, Jiali | Wang, Gang | Zhao, Jichun | Wang, Eryin | Yin, Boxing | Fang, Dongsheng | Zhao, Jianxin | Zhang, Hao | Chen, Yong Q. | Chen, Wei
Perfluorooctane sulfonate (PFOS) is a principal representative and the final degradation product of several commercially produced perfluorinated compounds. However, PFOS has a high bioaccumulation potential and therefore can exert toxicity on aquatic organisms, animals, and cells. Considering the widespread concern this phenomenon has attracted, we examined the acute and subchronic toxic effects of varying doses of PFOS on adult male C57BL/6 mice. The acute oral LD50 value of PFOS in male C57BL/6J mice was 0.579 g/kg body weight (BW). Exposure to the subchronic oral toxicity of PFOS at 2.5, 5, and 10 mg PFOS/kg BW/day for 30 days disrupted the homeostasis of antioxidative systems, induced hepatocellular apoptosis (as revealed by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay), triggered liver injury (as evidenced by the increased serum levels of aspartate aminotransferase, alanine amino transferase, alkaline phosphatase, and gamma-glutamyl transpeptidase and by the altered histology), and ultimately increased the liver size and relative weight of the mice. PFOS treatment caused liver damage but only slightly affected the kidneys and spleen of the mice. This study provided insights into the toxicological effects of PFOS.
اظهر المزيد [+] اقل [-]Phytotoxicity of wastewater-born micropollutants – Characterisation of three antimycotics and a cationic surfactant
2016
Richter, Elisabeth | Roller, Elias | Kunkel, Uwe | Ternes, Thomas A. | Coors, Anja
Sewage sludge applied to soil may be a valuable fertiliser but can also introduce poorly degradable and highly adsorptive wastewater-born residues of pharmaceuticals and personal care products (PPCPs) to the soil, posing a potential risk to the receiving environment. Three azole antimycotics (climbazole, ketoconazole and fluconazole), and one quaternary ammonium compound (benzyldimethyldodecylammonium chloride, BDDA) that are frequently detected in municipal sewage sludge and/or treated wastewater were therefore characterised in their toxicity toward terrestrial (Brassica napus) and aquatic (Lemna minor) plants. Fluconazole and climbazole showed the greatest toxicity to B. napus, while toxicity of ketoconazole and BDDA was by one to two orders of magnitude lower. Sludge amendment to soil at an agriculturally realistic rate of 5 t/ha significantly reduced the bioconcentration of BDDA in B. napus shoots compared to tests without sludge amendment, although not significantly reducing phytotoxicity. Ketoconazole, fluconazole and BDDA proved to be very toxic to L. minor with median effective concentrations ranging from 55.7 μg/L to 969 μg/L. In aquatic as well as terrestrial plants, the investigated azoles exhibited growth-retarding symptoms presumably related to an interference with phytohormone synthesis as known for structurally similar fungicides used in agriculture. While all four substances exhibited considerable phytotoxicity, the effective concentrations were at least one order of magnitude higher than concentrations measured in sewage sludge and effluent. Based on preliminary hazard quotients, BDDA and climbazole appeared to be of greater environmental concern than the two pharmaceuticals fluconazole and ketoconazole.
اظهر المزيد [+] اقل [-]Ecotoxicity of cadmium in a soil collembolan-predatory mite food chain: Can we use the 15N labeled litter addition method to assess soil functional change?
2016
Zhu, Dong | Ke, Xin | Wu, Longhua | Li, Zhu | Christie, Peter | Luo, Yongming
Effects of cadmium (Cd) on predator-prey relationships and soil ecological function are poorly understood and there are few methods available to measure soil functional change. Thus, we structured a soil-dwelling food chain containing the predatory mite Hypoaspis aculeifer and its collembolan prey Folsomia candida to study the effects of Cd exposure for eight weeks in a spiked soil aged for five years. The 15N labeled litter was added as food to analyze the change in nitrogen (N) transfer content. H. aculeifer reproduction and growth and the survival and reproduction of F. candida were all negatively affected by Cd exposure, and H. aculeifer reproduction was the most sensitive parameter. The sensitivity responses of F. candida and H. aculeifer were different from those using the previous single species test. The results suggest that predator–prey interactions might influence the toxicity of Cd by predation and food restriction. Cadmium lethal body concentrations of adults and juveniles of F. candida and H. aculeifer juveniles were 500–600, 180–270 and 8–10 μg g−1, respectively. The content of N transfer from litter to animals in the food chain decreased significantly with increasing soil Cd concentration between 100 and 400 mg kg−1. The results suggest that the 15N labeled litter addition method is potentially useful for quantitative assessment of soil functional change for further risk assessment purposes.
اظهر المزيد [+] اقل [-]Dry deposition of O3 and SO2 estimated from gradient measurements above a temperate mixed forest
2016
Wu, Zhiyong | Staebler, Ralf | Vet, Robert | Zhang, Leiming
Vertical profiles of O3 and SO2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O3 and SO2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (Vd) were 0.35 (0.27) and 0.59 (0.54) cm s−1, respectively, for O3 and SO2. Vd(O3) exhibited large seasonal variations with the highest monthly mean of 0.68 cm s−1 in August and the lowest of 0.09 cm s−1 in February. In contrast, seasonal variations of Vd(SO2) were smaller with monthly means ranging from 0.48 (May) to 0.81 cm s−1 (December). The different seasonal variations between O3 and SO2 were caused by the enhanced SO2 uptake by snow surfaces in winter. Diurnal variations showed a peak value of Vd in early morning in summer months for both O3 and SO2. Canopy wetness increased the non-stomatal uptake of O3 while decreasing the stomatal uptake. This also applied to SO2, but additional factors such as surface acidity also played an important role on the overall uptake.
اظهر المزيد [+] اقل [-]Throughfall and bulk deposition of dissolved organic nitrogen to holm oak forests in the Iberian Peninsula: Flux estimation and identification of potential sources
2016
Izquieta-Rojano, S. | García-Gomez, H. | Aguillaume, L. | Santamaría, J.M. | Tang, Y.S. | Santamaría, C. | Valiño, F. | Lasheras, E. | Alonso, R. | Àvila, A. | Cape, J.N. | Elustondo, D.
Deposition of dissolved organic nitrogen (DON) in both bulk precipitation (BD) and canopy throughfall (TF) has been measured for the first time in the western Mediterranean. The study was carried out over a year from 2012 to 2013 at four evergreen holm oak forests located in the Iberian Peninsula: two sites in the Province of Barcelona (Northeastern Spain), one in the Province of Madrid (central Spain) and the fourth in the Province of Navarra (Northern Spain). In BD the annual volume weighted mean (VWM) concentration of DON ranged from 0.25 mg l−1 in Madrid to 1.14 mg l−1 in Navarra, whereas in TF it ranged from 0.93 mg l−1 in Barcelona to 1.98 mg l−1 in Madrid. The contribution of DON to total nitrogen deposition varied from 34% to 56% in BD in Barcelona and Navarra respectively, and from 38% in Barcelona to 72% in Madrid in TF. Agricultural activities and pollutants generated in metropolitan areas were identified as potential anthropogenic sources of DON at the study sites. Moreover, canopy uptake of DON in Navarra was found in spring and autumn, showing that organic nitrogen may be a supplementary nutrient for Mediterranean forests, assuming that a portion of the nitrogen taken up is assimilated during biologically active periods.
اظهر المزيد [+] اقل [-]Arsenic sorption to nanoparticulate mackinawite (FeS): An examination of phosphate competition
2016
Niazi, Nabeel Khan | Burton, Edward D.
Nanoparticulate mackinawite (FeS) can be an important host-phase for arsenic (As) in sulfidic, subsurface environments. Although not previously investigated, phosphate (PO43−) may compete with As for available sorption sites on FeS, thereby enhancing As mobility in FeS-bearing soils, sediments and groundwater systems. In this study, we examine the effect of PO43− on sorption of arsenate (As(V)) and arsenite (As(III)) to nanoparticulate FeS at pH 6, 7 and 9. Results show that PO43− (at 0.01–1.0 mM P) did not significantly affect sorption of either As(V) or As(III) to nanoparticulate FeS at initial aqueous As concentrations ranging from 0.01 to 1.0 mM. At pH 9 and 7, sorption of both As(III) and As(V) to nanoparticulate FeS was similar, with distribution coefficient (Kd) values spanning 0.76–15 L g−1 (which corresponds to removal of 87–98% of initial aqueous As(III) and As(V) concentrations). Conversely, at pH 6, the sorption of As(III) was characterized by substantially higher Kd values (6.3–93.4 L g−1) than those for As(V) (Kd = 0.21–0.96 L g−1). Arsenic K-edge X-ray absorption near edge structure (XANES) spectroscopy indicated that up to 52% of the added As(V) was reduced to As(III) in As(V) sorption experiments, as well as the formation of minor amounts of an As2S3-like species. In As(III) sorption experiments, XANES spectroscopy also demonstrated the formation of an As2S3-like species and the partial oxidation of As(III) to As(V) (despite the strictly O2-free experimental conditions). Overall, the XANES data indicate that As sorption to nanoparticulate FeS involves several redox transformations and various sorbed species, which display a complex dependency on pH and As loading but that are not influenced by the co-occurrence of PO43−. This study shows that nanoparticulate FeS can help to immobilize As(III) and As(V) in sulfidic subsurface environments where As co-exists with PO43−.
اظهر المزيد [+] اقل [-]Assessing the remobilization of Antimony in sediments by DGT: A case study in a tributary of the Three Gorges Reservoir
2016
Gao, Li | Gao, Bo | Zhou, Huaidong | Xu, Dongyu | Wang, Qiwen | Yin, Shuhua
The Three Gorges Reservoir (TGR) is one of the world's largest man-made hydropower projects, which has posed great challenges to the aquatic environment of the Yangtze River since the impoundment of water. As a non-essential toxic metalloid, information on the bioavailability of Antimony (Sb) in TGR sediments is lacking. Four sediment cores were collected from a tributary and the mainstream in the TGR to investigate the distribution and remobilization of Sb using the diffusive gradients in thin films (DGT) technique. The results showed that the concentrations of Sb obtained by DGT (CDGT-Sb) at all of the sampling stations were low (below 0.30 μg/L), compared to the relatively high Sb concentrations in the sediments. The lateral and vertical distributions of CDGT-Sb revealed different tendencies in overlying water and sediments at all of the sampling sites in the TGR, which may be attributed to anthropogenic impacts, the heterogeneity of sediments and the unevenness of the sediment-water interface (SWI) during the deployment of DGT probes. In addition, CDGT-Sb in the surface sediments were lower than those in the overlying water, and concentration gradients were found near the SWI, demonstrating that Sb has the potential to diffuse from the overlying water into the sediment. In the sediment cores, different peaks were discovered in the DGT probes and the remobilization of Sb simultaneously appeared in the vicinity of −10 cm. Correlation analysis showed that CDGT-Sb had no or negative correlation with CDGT-Fe and CDGT-Mn in all of the DGT probes, suggesting that the release of Sb was unassociated with Fe and Mn in the sediments in the study area.
اظهر المزيد [+] اقل [-]