خيارات البحث
النتائج 821 - 830 من 5,149
Analysis of metal(loid)s contamination and their continuous input in soils around a zinc smelter: Development of methodology and a case study in South Korea النص الكامل
2018
Yun, Sung-Wook | Baveye, Philippe C. | Kim, Dong-Hyeon | Kang, Dong-Hyeon | Lee, Si-Young | Kong, Min-Jae | Park, Chan-Gi | Kim, Hae-Do | Son, Jinkwan | Yu, Chan
Analysis of metal(loid)s contamination and their continuous input in soils around a zinc smelter: Development of methodology and a case study in South Korea النص الكامل
2018
Yun, Sung-Wook | Baveye, Philippe C. | Kim, Dong-Hyeon | Kang, Dong-Hyeon | Lee, Si-Young | Kong, Min-Jae | Park, Chan-Gi | Kim, Hae-Do | Son, Jinkwan | Yu, Chan
Soil contamination due to atmospheric deposition of metals originating from smelters is a global environmental problem. A common problem associated with this contamination is the discrimination between anthropic and natural contributions to soil metal concentrations: In this context, we investigated the characteristics of soil contamination in the surrounding area of a world class smelter. We attempted to combine several approaches in order to identify sources of metals in soils and to examine contamination characteristics, such as pollution level, range, and spatial distribution. Soil samples were collected at 100 sites during a field survey and total concentrations of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Zn were analyzed. We conducted a multivariate statistical analysis, and also examined the spatial distribution by 1) identifying the horizontal variation of metals according to particular wind directions and distance from the smelter and 2) drawing a distribution map by means of a GIS tool. As, Cd, Cu, Hg, Pb, and Zn in the soil were found to originate from smelter emissions, and As also originated from other sources such as abandoned mines and waste landfill. Among anthropogenic metals, the horizontal distribution of Cd, Hg, Pb, and Zn according to the downwind direction and distance from the smelter showed a typical feature of atmospheric deposition (regression model: y = y0 + αe−βx). Lithogenic Fe was used as an indicator, and it revealed the continuous input and accumulation of these four elements in the surrounding soils. Our approach was effective in clearly identifying the sources of metals and analyzing their contamination characteristics. We believe this study will provide useful information to future studies on soil pollution by metals around smelters.
اظهر المزيد [+] اقل [-]Analysis of metal(loid)s contamination and their continuous input in soils around a zinc smelter: Development of methodology and a case study in South Korea النص الكامل
2018
Yun, Sung-Wook | Baveye, Philippe | Kim, Dong-Hyeon | Kang, Dong-Hyeon | Lee, Si-Young | Kong, Min-Jae | Park, Chan-Gi | Kim, Hae-Do | Son, Jinkwan | Yu, Chan | Department of Agricultural Engineering,RDA, Wanju ; National Institute of Agricultural Sciences | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; Institut National de la Recherche Agronomique (INRA)-AgroParisTech | Université Paris-Saclay | Gongju National University | Korea Rural Community Corporation ; Rural Research Institute (RRI) | Gyeongsang National University
Soil contamination due to atmospheric deposition of metals originating from smelters is a global environmental problem. A common problem associated with this contamination is the discrimination between anthropic and natural contributions to soil metal concentrations: In this context, we investigated the characteristics of soil contamination in the surrounding area of a world class smelter. We attempted to combine several approaches in order to identify sources of metals in soils and to examine contamination characteristics, such as pollution level, range, and spatial distribution. Soil samples were collected at 100 sites during a field survey and total concentrations of As, Cd, Cr, Cu, Fe, Hg, Ni, Pb, and Zn were analyzed. We conducted a multivariate statistical analysis, and also examined the spatial distribution by 1) identifying the horizontal variation of metals according to particular wind directions and distance from the smelter and 2) drawing a distribution map by means of a GIS tool. As, Cd, Cu, Hg, Pb, and Zn in the soil were found to originate from smelter emissions, and As also originated from other sources such as abandoned mines and waste landfill. Among anthropogenic metals, the horizontal distribution of Cd, Hg, Pb, and Zn according to the downwind direction and distance from the smelter showed a typical feature of atmospheric deposition (regression model: y = y0 + αe−βx). Lithogenic Fe was used as an indicator, and it revealed the continuous input and accumulation of these four elements in the surrounding soils. Our approach was effective in clearly identifying the sources of metals and analyzing their contamination characteristics. We believe this study will provide useful information to future studies on soil pollution by metals around smelters.
اظهر المزيد [+] اقل [-]Empirical analysis of the effect of descent flight path angle on primary gaseous emissions of commercial aircraft النص الكامل
2018
Turgut, Enis T. | Usanmaz, Oznur | Rosen, Marc A.
In this study, the effects of descent flight path angle (between 1.25° and 4.25°) on aircraft gaseous emissions (carbon monoxide, total hydrocarbons and nitrogen oxides) are explored using actual flight data from aircraft flight data recording system and emissions indices from the International Civil Aviation Organization. All emissions parameters are corrected to flight conditions using Boeing Fuel Flow Method2, where the ambient air pressure, temperature and humidity data are obtained from long-term radiosonde data measured close to the arrival airport. The main findings highlight that the higher the flight path angle, the higher the emission indices of CO and HC, whereas the lower the emissions index of NOx and fuel consumption. Furthermore, during a descent, a heavier aircraft tends to emit less CO and HC, and more NOx. For a five-tonne aircraft mass increase, the average change in emissions indices are found to be −4.1% and −5.7% (CO), −5.4% and −8.2% (HC), and +1.1% and +1.6% (NOx) for high and low flight path angle groups, respectively. The average emissions indices for CO, HC and NOx during descent are calculated to be 24.5, 1.7 and 5.6 g/kg of fuel, whereas the average emissions for descending from 32,000 ft (9.7 km) and 24,000 ft (7.3 km) are calculated to be 7–8 kg (CO), ∼0.5 kg (HC) and ∼3 kg (NOx).
اظهر المزيد [+] اقل [-]Assessment of winter air pollution episodes using long-range transport modeling in Hangzhou, China, during World Internet Conference, 2015 النص الكامل
2018
Ni, Zhi-zhen | Luo, Kun | Zhang, Jun-xi | Feng, Rui | Zheng, He-xin | Zhu, Hao-ran | Wang, Jing-fan | Fan, Jian-ren | Gao, Xiang | Cen, Ke-fa
A winter air pollution episode was observed in Hangzhou, South China, during the Second World Internet Conference, 2015. To study the pollution characteristics and underlying causes, the Weather Research and Forecasting with Chemistry model was used to simulate the spatial and temporal evolution of the pollution episode from December 8 to 19, 2015. In addition to scenario simulations, analysis of the atmospheric trajectory and synoptic weather conditions were also performed. The results demonstrated that control measures implemented during the week preceding the conference reduced the fine particulate matter (PM2.5) pollution level to some extent, with a decline in the total PM2.5 concentration in Hangzhou of 15% (7%–25% daily). Pollutant long-range transport, which occurred due to a southward intrusion of strong cold air driven by the Siberia High, led to severe pollution in Hangzhou on December 15, 2015, accounting for 85% of the PM2.5 concentration. This study provides new insights into the challenge of winter pollution prevention in Hangzhou. For adequate pollution prevention, more regional collaborations should be fostered when creating policies for northern China.
اظهر المزيد [+] اقل [-]Photons and foraging: Artificial light at night generates avoidance behaviour in male, but not female, New Zealand weta النص الكامل
2018
Farnworth, Bridgette | Innes, John | Kelly, Catherine | Littler, Ray | Waas, Joseph R.
Avoiding foraging under increased predation risk is a common anti-predator behaviour. Using artificial light to amplify predation risk at ecologically valuable sites has been proposed to deter introduced mice (Mus musculus) and ship rats (Rattus rattus) from degrading biodiversity in island ecosystems. However, light may adversely affect native species; in particular, little is known about invertebrate responses to altered lighting regimes. We investigated how endemic orthopterans responded to artificial light at Maungatautari Ecological Island (Waikato, New Zealand). We predicted that based on their nocturnal behaviour, ecology and evolutionary history, tree weta (Hemideina thoracica) and cave weta (Rhaphidophoridae) would reduce their activity under illumination. Experimental stations (n = 15) experienced three evenings under each treatment (order randomised): (a) light (illuminated LED fixture), (b) dark (unilluminated LED fixture) and (c) baseline (no lighting fixture). Weta visitation rates were analysed from images captured on infra-red trail cameras set up at each station. Light significantly reduced the number of observations of cave (71.7% reduction) and tree weta (87.5% reduction). In observations where sex was distinguishable (53% of all visits), male tree weta were observed significantly more often (85% of visits) than females (15% of visits) and while males avoided illuminated sites, no detectable difference was observed across treatments for females. Sex could not be distinguished for cave weta. Our findings have implications for the use of light as a novel pest management strategy, and for the conservation of invertebrate diversity and abundance within natural and urban ecosystems worldwide that may be affected by light pollution.
اظهر المزيد [+] اقل [-]PCBs–high-fat diet interactions as mediators of gut microbiota dysbiosis and abdominal fat accumulation in female mice النص الكامل
2018
Chi, Yulang | Lin, Yi | Zhu, Huimin | Huang, Qiansheng | Ye, Guozhu | Dong, Sijun
Polychlorinated biphenyls (PCBs), one type of lipophilic pollutant, are ubiquitous in daily life. PCBs exposure has been implicated in the alterations of gut microbial community which is profoundly associated with diverse metabolic disorders, including obesity. High-fat diet (H) is a dietary pattern characterized by a high percentage of fat. According to the theory that similarities can be easily solvable in each other, PCBs and H exposures are inevitably and objectively coexistent in a real living environment, prompting great concerns about their individual and combined effects on hosts. However, the effects of PCBs-H interactions on gut microbiota and obesity are still incompletely understood. In the present study, the effects of PCBs and/or H on the gut microbiota alteration and obesity risk in mice were examined and the interactions between PCBs and H were investigated. Obtained results showed that PCBs and/or H exposure induced prominent variations in the gut microbiota composition and diversity. Exposure to PCBs also resulted in higher body fat percentage, greater size of abdominal subcutaneous adipocytes and increased expression of proinflammatory cytokines including TNF-α, iNOS and IL-6. Such PCBs-induced changes could be further enhanced upon the co-exposure of H, implying that obese individuals may be vulnerable to PCBs exposure. Taken together, the present study is helpful for a better understanding of the gut microbiota variation influenced by PCBs and/or H exposure, and furthermore, provides a novel insight into the mechanism of PCBs-H interactions on host adiposity.
اظهر المزيد [+] اقل [-]Diverse mechanisms drive fluoride enrichment in groundwater in two neighboring sites in northern China النص الكامل
2018
Li, Danni | Gao, Xubo | Wang, Yanxin | Luo, Wenting
Excessive amounts of fluoride in drinking groundwater are harmful to human health, but the mechanisms responsible for fluoride enrichment in groundwater are not fully understood. Samples from two neighboring areas with endemic fluorosis were collected to test the hypothesis that there are distinctly different mechanisms responsible for the enrichment of fluoride in these groundwater. Hydrochemistry, stable isotopes and geochemical simulation were conducted together to investigate the fluoride spatial distribution and the diversity of responsible mechanisms. Our results showed that the spatial distributions of fluoride are different: I) high [F] in fresh shallow groundwater (SGQJ) and II) medium [F] in fresh to brackish deep groundwater (DGQJ) in the Qiji area; and III) medium [F] in brackish shallow groundwater (SGYH) and IV) low [F] in fresh deep groundwater (DGYH) in the Yanhu area. We also found that the fluoride concentration in groundwater is primarily controlled by the dissolution equilibrium of fluorite, as suggested by the correlation between [F] and [Ca]. However, there are other significant mechanisms: 1) for SGQJ, fluoride-bearing minerals (such as fluorite) dissolution, along with moderate evaporation, cation exchange and the more alkaline conditions are the driving factors; 2) for SGYH, the contributing factors are strong evaporation, the salt effect, dissolution of evaporites, gypsum and dolomite, bicarbonate-fluoride competition and anthropogenic activity; 3) for DGQJ, cation exchange, alkaline conditions and competitive adsorption are major factors; and 4) dolomite dissolution promotes the [F] increase in DGYH. Our findings suggest that the hydrogeochemical conditions play key roles in the enrichment of fluoride and that caution should be taken in the future when evaluating fluoride occurrence in groundwater, even in nearby areas.
اظهر المزيد [+] اقل [-]Distribution and predictors of urinary polycyclic aromatic hydrocarbon metabolites in two pregnancy cohort studies النص الكامل
2018
Cathey, Amber | Ferguson, Kelly K. | McElrath, Thomas F. | Cantonwine, David E. | Pace, Gerry | Alshawabkeh, Akram | Cordero, Jose F. | Meeker, John D.
Pregnant women and their fetuses represent susceptible populations to environmental contaminants. Exposure to polycyclic aromatic hydrocarbons (PAHs) among pregnant women may contribute to adverse birth outcomes such as preterm birth. Multiple previous studies have assessed airborne sources of PAHs among pregnant women but few have measured urinary PAH metabolites which can capture total exposure through multiple routes. The aim of this study was to bridge this knowledge gap by assessing longitudinal urinary PAH metabolite concentrations over two time points in pregnancy cohorts in Boston (N = 200) and Puerto Rico (N = 50) to better understand exposure distributions throughout pregnancy and how they relate to demographic factors. Urine samples were analyzed for 1-NAP, 2-NAP, 2-FLU, 1-PHE, 2,3-PHE, 4-PHE, 9-PHE, and 1-PYR. Concentrations of 2-NAP, 1-PYR, and 4-PHE were higher in Puerto Rico, while all other metabolites were present in higher concentrations in Boston. In Puerto Rico, intraclass correlation coefficients (ICC) were weak to moderate, ranging from 0.06 to 0.42. PAH metabolite concentrations were significantly higher among younger, heavier (except 1-NAP and 9-PHE), and less educated individuals in Boston only. Consistent significant associations between PAH concentrations and measured covariates were not found in Puerto Rico. Our results suggest that potentially important differences in PAH exposure exist between these two populations. Additionally, our results indicate that multiple urinary measurements are required to accurately assess PAH exposure throughout pregnancy.
اظهر المزيد [+] اقل [-]Adsorption and desorption of phthalic acid esters on graphene oxide and reduced graphene oxide as affected by humic acid النص الكامل
2018
Lü, Lun | Wang, Jun | Chen, Baoliang
The implications of humic acid (HA) regarding surface properties of graphene materials and their interactions with phthalic acid esters (PAEs) are not vivid. We report the role of HA on graphene oxide (GO) and reduced graphene oxide (RGO) for sorption-desorption behavior of PAEs. Besides higher surface area and pore volume, the hydrophobic π-conjugated carbon atoms on RGO ensured prominent adsorption capacity towards PAEs in comparison to hydrophilic GO, highlighting the hydrophobic effect. After adjusting for the hydrophobic effect by calculating the hexadecane-water partition coefficient (KHW) normalized adsorption coefficient (Kd/KHW), the dimethyl phthalate (DMP) molecule portrayed a higher adsorption affinity towards RGO by π-π electron donor–acceptor (EDA) interaction for active sites on graphene interface via sieving effect. In contrast to RGO, the weak π-π EDA interactions and H-bonding was observed between the carbonyl groups of PAEs and oxygen containing functional groups on GO. There was no obvious change in morphologies of GO and RGO before and desorption as revealed by SEM and TEM images, as desorption hysteresis did not occur in all conditions. The presence of HA also resulted in shielding effect thereby decreasing the adsorption rate and capacity of diethyl phthalate (DEP) on GO and RGO, while it had little effect on DMP, probably due to the adsorbed HA as new active sites. The desorption of DMP and DEP on RGO in presence of HA was quick and enhanced. These results should be important for evaluating the fate and health risk of graphene materials and PAEs in the environment.
اظهر المزيد [+] اقل [-]Changes in mycelia growth, sporulation, and virulence of Phytophthora capsici when challenged by heavy metals (Cu2+, Cr2+ and Hg2+) under acid pH stress النص الكامل
2018
Liu, Peiqing | Wei, Mengyao | Zhang, Jinzhu | Wang, Rongbo | Li, Benjin | Chen, Qinghe | Weng, Qiyong
Phytophthora capsici, an economically devastating oomycete pathogen, causes devastating disease epidemics on a wide range of vegetable plants and pose a grave threat to global vegetables production. Heavy metals and acid pH are newly co-occurring stresses to soil micro-organisms, but what can be expected for mycelia growth and virulence and how they injure the oomycetes (especially P. capsici) remains unknown. Here, the effects of different heavy metals (Cu²⁺, Cr²⁺, and Hg²⁺) on mycelia growth and virulence were investigated at different pHs (4.0 vs. 7.0) and the plausible molecular and physiological mechanisms were analyzed. In the present study, we compared the effective inhibition of different heavy metals (Cu²⁺, Cr²⁺, and Hg²⁺) and acid pH on a previously genome sequenced P. capsici virulent strain LT1534. Both stress factors independently affected its mycelia growth and sporulation. Next, we investigated whether ROS participated in the pH-inhibited mycelial growth, finding that the ROS scavenger, catalase (CAT), significantly inhibited the acid pH-induced ROS in mycelia. Additionally, because MAPK specially transmits different stress responsive signals in environment into cells, we employed CAT and a p38-MAPK pathway inhibitor to investigate ROS and p38-MAPK roles in heavy metal-inhibited mycelia growth at different pHs (4.0 vs. 7.0), finding that they significantly inhibited growth. Furthermore, ROS and p38-MAPK influenced the heavy metal-induced TBARS content, total antioxidant capacity (TAC), and CAT activity at different pHs, and also reduced the expression of infection-related laccases (PcLAC2) and an effector-related protein (PcNLP14). We propose that acid pH stress accelerates how heavy metals inhibit mycelium growth, sporulation, and virulence change in P. capsici, and posit that ROS and p38-MAPK function to regulate the molecular and physiological mechanisms underlying this toxicity. Although these stresses induce molecular and physiological challenges to oomycetes, much remains to be known the mechanisms dedicated to resolve these environmental stresses.
اظهر المزيد [+] اقل [-]Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees النص الكامل
2018
Anna, Klamerus-Iwan | Emanuel, Gloor | Anna, Sadowska-Rociek | Błońska, Ewa | Lasota, Jarosław | Łagan, Sylwia
Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees النص الكامل
2018
Anna, Klamerus-Iwan | Emanuel, Gloor | Anna, Sadowska-Rociek | Błońska, Ewa | Lasota, Jarosław | Łagan, Sylwia
The canopy water storage capacity (S) is an important parameter for the hydrological cycle in forests. One factor which influences the S is leaf texture, which in turn is thought to be affected by the contents of polycyclic aromatic hydrocarbons (PAHs). In order to improve our understanding of S we simulated rainfall and measured the S of coniferous species growing under various conditions. The contents of 18 PAHs were measured in the needles. The species chosen were: Scots pine (Pinus sylvestris L), Norway spruce (Picea abies (L.) H. Karst) and silver fir (Abies Alba Mill.). Sample branches were collected in 3 locations: A - forest; B - housing estate; C - city center. We found that PAHs have a significant impact on the S of tree crowns. The increase in the total content of all of polycyclic aromatic hydrocarbons (SUM.PAH) translates into an increase of S for all species. The S is the highest for the P. abies species, followed by P. sylvestris and A. alba at all locations. Within the same species, an increase in the value of S is associated with an increase in the PAH content in needles measured by gas chromatography. For A.alba, the average S increased from 11.54% of the total amount of simulated rain (ml g⁻¹) at location A, to 17.10% at location B, and 21.02% at location C. Similarly for P. abies the S was 21.78%, 29.06% and 34.36% at locations A, B and C respectively.The study extends the knowledge of the mechanisms of plant surface adhesion and the anthropogenic factors that may modify this process as well as foliage properties.
اظهر المزيد [+] اقل [-]Linking the contents of hydrophobic PAHs with the canopy water storage capacity of coniferous trees النص الكامل
Anna Klamerus-Iwan | Gloor Emanuel | Anna Sadowska-Rociek | Ewa Błońska | Jarosław Lasota | Sylwia Łagan
The canopy water storage capacity (S) is an important parameter for the hydrological cycle in forests. One factor which influences the S is leaf texture, which in turn is thought to be affected by the contents of polycyclic aromatic hydrocarbons (PAHs). In order to improve our understanding of S we simulated rainfall and measured the S of coniferous species growing under various conditions. The contents of 18 PAHs were measured in the needles. The species chosen were: Scots pine (Pinus sylvestris L), Norway spruce (Picea abies (L.) H. Karst) and silver fir (Abies Alba Mill.). Sample branches were collected in 3 locations: A - forest; B - housing estate; C - city center. We found that PAHs have a significant impact on the S of tree crowns. The increase in the total content of all of polycyclic aromatic hydrocarbons (SUM.PAH) translates into an increase of S for all species. The S is the highest for the P. abies species, followed by P. sylvestris and A. alba at all locations. Within the same species, an increase in the value of S is associated with an increase in the PAH content in needles measured by gas chromatography. For A.alba, the average S increased from 11.54% of the total amount of simulated rain (ml g−1) at location A, to 17.10% at location B, and 21.02% at location C. Similarly for P. abies the S was 21.78%, 29.06% and 34.36% at locations A, B and C respectively. | Rain simulation, Canopy water storage capacity, Ecohydrology, Air pollution, P. sylvestris, P. abies, A. alba | 40 | 1176-1184
اظهر المزيد [+] اقل [-]