خيارات البحث
النتائج 831 - 840 من 4,937
Cardiotoxicity of environmental contaminant tributyltin involves myocyte oxidative stress and abnormal Ca2+ handling النص الكامل
2019
Pereira, C.L.V. | Ximenes, C.F. | Merlo, E. | Sciortino, A.S. | Monteiro, J.S. | Moreira, A. | Jacobsen, B.B. | Graceli, J.B. | Ginsburg, K.S. | Ribeiro Junior, R.F. | Bers, D.M. | Stefanon, I.
Tributyltin (TBT) is an organotin environmental pollutant widely used as an agricultural and wood biocide and in antifouling paints. Countries began restricting TBT use in the 2000s, but their use continues in some agroindustrial processes. We studied the acute effect of TBT on cardiac function by analyzing myocardial contractility and Ca²⁺ handling. Cardiac contractility was evaluated in isolated papillary muscle and whole heart upon TBT exposure. Isolated ventricular myocytes were used to measure calcium (Ca²⁺) transients, sarcoplasmic reticulum (SR) Ca²⁺ content and SR Ca²⁺ leak (as Ca²⁺ sparks). Reactive oxygen species (ROS), as superoxide anion (O2•⁻) was detected at intracellular and mitochondrial myocardium. TBT depressed cardiac contractility and relaxation in papillary muscle and intact whole heart. TBT increased cytosolic, mitochondrial ROS production and decreased mitochondrial membrane potential. In isolated cardiomyocytes TBT decreased both Ca²⁺ transients and SR Ca²⁺ content and increased diastolic SR Ca²⁺ leak. Decay of twitch and caffeine-induced Ca²⁺ transients were slowed by the presence of TBT. Dantrolene prevented and Tiron limited the reduction in SR Ca²⁺ content and transients. The environmental contaminant TBT causes cardiotoxicity within minutes, and may be considered hazardous to the mammalian heart. TBT acutely induced a negative inotropic effect in isolated papillary muscle and whole heart, increased arrhythmogenic SR Ca²⁺ leak leading to reduced SR Ca²⁺ content and reduced Ca²⁺ transients. TBT-induced myocardial ROS production, may destabilize the SR Ca²⁺ release channel RyR2 and reduce SR Ca²⁺ pump activity as key factors in the TBT-induced negative inotropic and lusitropic effects.
اظهر المزيد [+] اقل [-]Levels, accumulation patterns and retrospective trends of perfluoroalkyl acids (PFAAs) in terrestrial ecosystems over the last three decades النص الكامل
2019
Falk, Sandy | Stahl, Thorsten | Fliedner, Annette | Rüdel, Heinz | Tarricone, Kathrin | Brunn, Hubertus | Koschorreck, Jan
As a result of their ubiquitous presence in the environment perfluoroalkyl acids (PFAAs) have been demonstrated in numerous organisms worldwide, in particular in those of higher trophic levels. The fact that PFAAs have been detected in various human matrices, together with the resultant potential human health risks, knowledge of possible paths of entry and distribution in various ecosystems, is of great importance. In this context pooled samples of terrestrial ecosystems – roe deer liver (n = 141), earthworms (n = 44) as well as leaves from beech and poplar trees (n = 70) – from the year 1989–2015 were obtained from the German Environmental Specimen Bank and examined for the presence of 11 PFAAs for the first time. In addition to determining individual and total PFAA concentrations, temporal trends have been deduced in order to determine the effectiveness of regulatory measures. The highest total mean concentration of PFAAs (sum of the concentrations of the 11 analytes) were 9.9 μg/kg in the roe deer liver samples, followed by earthworm samples with a mean PFAA concentration of 3.5 μg/kg and leaves with a mean total concentration of 2.5 μg/kg. In regard to temporal trends there was a significant reduction of concentrations for perfluorooctane sulfonate, perfluorooctanoic acid, perfluorononanoic acid and perfluorodecanoic acid in roe deer liver from 2003 to 2015, an indication of the effectiveness of regulatory measures. The same is true for the perfluorooctane sulfonate concentrations in earthworms and for perfluorooctanoic acid concentrations in the leaves. In contrast, an increase in perfluorobutanoic acid concentrations was observed from 2003 to 2015 in all three matrices. In summary it must be noted that in spite of the discernible effectiveness of minimization strategies, PFAAs are still detectable in terrestrial matrices and concentrations of other PFAAs as perfluorobutanoic acid appear to be increasing.
اظهر المزيد [+] اقل [-]Long-term N and S addition and changed litter chemistry do not affect trembling aspen leaf litter decomposition, elemental composition and enzyme activity in a boreal forest النص الكامل
2019
Wang, Qi | Kwak, Jin-Hyeob | Choi, Woo-Jung | Chang, Scott X.
The effect of long-term nitrogen (N) and sulfur (S) deposition on litter mass loss and changes in carbon (C), N, and S composition and enzyme activities during litter decomposition was investigated in a boreal forest. This study included four N × S treatments: control (CK), N application (30 kg N ha−1 yr−1), S application (30 kg S ha−1 yr−1), and N plus S application (both at 30 kg ha−1 yr−1). Two experiments were conducted for 22 months: 1) a common litter decomposition experiment with litter bags containing a common litter (same litter chemistry) and 2) an in-situ litter decomposition experiment with litter from each treatment plot (and thus having different litter chemistry). Litterbags were placed onto the four treatment plots to investigate the direct effect of N and S addition and the combined effect of N and/or S addition and litter chemistry on litter decomposition, respectively. Regardless of the source of litter, N and/or S addition affected C, N and S composition at a certain period of the experiment but did not affect litter mass loss and enzyme activity throughout the experiment, indicating that the N and S addition rates were below the critical level required to affect C and N cycling in the studied ecosystem. However, the greater change in N composition per unit of litter mass loss in the N addition treatment than in the other treatments in the common litter but not in the in-situ litter experiment, suggests that the effect of N addition on N loss and retention depends on the initial litter chemistry. We conclude that the studied N and S addition rates did not affect litter decomposition and elemental cycling in the studied forest ecosystem even though the N and S addition rates were much greater than their ambient deposition rates.
اظهر المزيد [+] اقل [-]Genes associated with Parkinson's disease respond to increasing polychlorinated biphenyl levels in the blood of healthy females النص الكامل
2019
Bohler, Sacha | Krauskopf, Julian | Espín-Pérez, Almudena | Gebel, Stephan | Palli, Domenico | Rantakokko, Panu | Kiviranta, Hannu | Kyrtopoulos, Soterios A. | Balling, Rudi | Kleinjans, Jos
Polychlorinated biphenyls (PCBs) are a class of widespread environmental pollutants, commonly found in human blood, that have been suggested to be linked to the occurrence of sporadic Parkinson's disease (PD). It has been reported that some non-coplanar PCBs accumulate in the brains of female PD patients. To improve our understanding of the association between PCB exposure and PD risk we have applied whole transcriptome gene expression analysis in blood cells from 594 PCB-exposed subjects (369 female, 225 male).Interestingly, we observe that in females, blood levels of non-coplanar PCBs appear to be associated with expression levels of PD-specific genes. However, no such association was detected in males. Among the 131 PD-specific genes affected, 39 have been shown to display similar changes in expression levels in the substantia nigra of deceased PD patients. Especially among the down-regulated genes, transcripts of genes involved in neurotransmitter vesicle-related functions were predominant.
اظهر المزيد [+] اقل [-]Role of transient receptor potential cation channel subfamily V member 1 (TRPV1) on ozone-exacerbated allergic asthma in mice النص الكامل
2019
Li, Jinquan | Chen, Yushan | Chen, Qiao Yi | Liu, Dan | Xu, Lang | Cheng, Guirong | Yang, Xu | Guo, Zhenzhong | Zeng, Yan
Around the globe, worsening air pollution is spawning major public health and environmental concerns, especially in the poorest and most populous cities. As a major secondary air pollutant, ozone is a potential risk factor for exacerbated asthma, although the underlying mechanisms remain uncertain. In this study, we aim to investigate the role of ozone on asthma exacerbation using a classic asthmatic model with allergic airway inflammation by treating Balb/c mice with ovalbumin (OVA). Our study shows ozone exposure significantly exacerbated OVA-induced asthmatic phenotypes, including serum immunoglobulin, Th cytokines, inflammatory cell counts, mucus production, airway remodeling, and airway hyper-responsiveness (AHR). Interestingly, expression of transient receptor potential cation channel subfamily V member1 (TRPV1) was also significantly elevated in ozone-exacerbated asthmatic mice and that treatment with TRPV1 antagonist effectively suppressed AHR, airway inflammation and remodeling. The underlying mechanisms of these effects may be associated with suppression of neuropeptide calcitonin gene-related peptide (CGRP) and thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine. Base on the role of TRPV1 in allergic asthma, this study further revealed that inhibition of TRPV1 by TRPV1 antagonist has significant anti-inflammatory effects on ozone-induced asthma exacerbation in this study. Induction of TRPV1 expression may be an important mechanism underlying the increased risks for asthma after exposure to environmental pollutants.
اظهر المزيد [+] اقل [-]Persistence of elevated concentrations of PM, affiliated pharmaceuticals, and tetracycline resistance genes downwind of feedyards النص الكامل
2019
Wooten, Kimberly J. | Mayer, Gregory D. | Smith, Philip N.
Beef cattle feedyards have been identified as sources of large amounts of particulate matter (PM) which may transport affiliated chemicals including steroids, beta agonists, and antibiotics from feedyards into the environment. This study is the first to examine persistence of PM-affiliated pharmaceuticals downwind of feedyards using multiple downwind samples collected at increasing distances from feedyard boundaries (n = 5). Concentrations of antibiotics and ractopamine per gram of PM remained consistent at all downwind locations (out to 4.8 km) whereas concentrations per m³ air decreased significantly at distances between 0.1 and 0.7 km downwind, corresponding to significant decreases in mass of PM. Monensin was present in the highest concentrations of any measured pharmaceutical, with concentrations of 37 μg/g PM (376 ng/m³) air in samples collected within 0.1 km downwind of feedyards. Total copy count of tetracycline resistance genes (tetW, tetQ, tetO, tetM, tetL, and tetB) were also significantly increased in samples collected within 0.1 km downwind of feedyards (10⁶ copies) as compared to samples collected upwind (10³ copies) and farther downwind (10⁴ copies) of feedyard boundaries. These results suggest that transport of pharmaceutical-laden PM into the terrestrial environment is occurring primarily via PM deposition within 0.7 km of the feedyard, while aerial transport persists over longer distances (>4.8 km).
اظهر المزيد [+] اقل [-]The interactions between micro polyvinyl chloride (mPVC) and marine dinoflagellate Karenia mikimotoi: The inhibition of growth, chlorophyll and photosynthetic efficiency النص الكامل
2019
Zhao, Ting | Tan, Liju | Huang, Wenqiu | Wang, Jiangtao
Microplastics pose a great threat to entire marine ecosystems, but little is known about their impacts on phytoplankton, especially for the harmful dinoflagellates. In this study, effects of micro polyvinyl chloride (mPVC) on the growth, chlorophyll content and photosynthetic efficiency of the dinoflagellate Karenia mikimotoi at different periods (0, 24, 48, 72 and 96 h) were assessed using gradient concentrations (0, 5, 25, 50 and 100 mg L⁻¹) of mPVC with a size of 1 μm. PVC microplastics had dose-dependent adverse effects on K. mikimotoi growth, chlorophyll content and photosynthetic efficiency. The density of algal cell decreased with increasing mPVC concentrations and the highest inhibitory rate (IR) was 45.8% at 24 h under 100 mg L⁻¹ of mPVC. The total chlorophyll content and chlorophyll content in a single algal cell decreased at 96 h and the ФPSⅡ and Fv/Fm decreased 25.3% and 17.1%, respectively. The SEM images provided an intuitive visual method to observe the behaviors and interactions between microplastics and microalgae. It was found from the SEM images that microalgae was wrapped by microplastic beads. The physical blockage and aggregation were also responsible for the cytotoxicity of K. mikimotoi. Our study clarified that PVC microplastics can reduce algal growth, chlorophyll content and photosynthetic efficiency, and it is beneficial to evaluate the possible impact of plastics on aquatic ecosystems.
اظهر المزيد [+] اقل [-]Aggregation of oxidized multi-walled carbon nanotubes: Interplay of nanomaterial surface O-functional groups and solution chemistry factors النص الكامل
2019
Xia, Tianjiao | Guo, Xuetao | Lin, Yixuan | Xinbo, | Li, Shunli | Yan, Ni | Zhu, Lingyan
The fast-growing production and application of carbon nanotube (CNT) materials in a variety of industrial products inevitably lead to their release to wastewater and surface water. CNT would experience oxidization in wastewater treatment plant due to the presence of large amount of disinfectants, such as H₂O₂ and O₃, which in turn affects the environmental fates and risks of CNT. In this study, oxidized CNT materials (O-CNTs) were prepared by treating CNT with H₂O₂/UV and O₃ (denoting as H₂O₂-CNT and O₃-CNT, respectively). A variety of characterizations indicated that oxygen containing groups were generated on CNT surface upon the oxidation, and the O/C ratio increased in the order of pristine CNT < H₂O₂-CNT < O₃-CNT. In the presence of Na⁺, K⁺ and Mg²⁺, the O-CNTs displayed better colloidal stability than the pristine CNT, and the stability increased with the oxidation degree (indicated by O/C ratio). This could be explained by the more negative surface charge and stronger hydrophilicity of the O-CNTs. Unexpectedly, in the presence of Ca²⁺, the most oxidized O₃-CNT exhibited the poorest colloidal stability. The abundant carboxyl groups in O₃-CNT provided effective binding sites for cation bridging effect through Ca²⁺ and led to stronger aggregation. Increasing pH was more favorable to disperse CNTs (both O-CNT and pristine CNT) in the presence of Na⁺, but much less effective in inhibiting the aggregation of O₃-CNT in presence of Ca²⁺. This could be explained by the stronger cation bridging effect due to enhanced deprotonation the –COOH groups at higher pH conditions. The calculated Hamaker constants of the CNTs decreased with the oxidation degree, implying that there was lower van der Waals force between the O-CNTs. The Derjaguin–Landau–Verwey–Overbeek (DLVO) calculation confirmed that O-CNTs had to overcome higher energy barrier and thus showed better colloidal stability than the pristine CNT in the presence of Na⁺.
اظهر المزيد [+] اقل [-]Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus النص الكامل
2019
Gutner-Hoch, Eldad | Martins, Roberto Borges | Maia, Frederico | Oliveira, Tania | Shpigel, Muki | Weis, Michal | Tedim, João | Benayahu, Yehuda
Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus النص الكامل
2019
Gutner-Hoch, Eldad | Martins, Roberto Borges | Maia, Frederico | Oliveira, Tania | Shpigel, Muki | Weis, Michal | Tedim, João | Benayahu, Yehuda
Antifouling booster biocides are chemicals used in protective paints to tackle the adhesion of fouling organisms to maritime artificial structures. However, they are also known to exert toxic effects on non-target organisms. Recent research developments have highlighted the potential use of engineered micro/nanomaterials (EMNMs) as carriers of antifouling booster biocides in order to control their release and to reduce the harmful effects on living biota. In the present study, we sought to assess the toxicity of two commercially-available booster biocides: (zinc pyrithione (ZnPT) and copper pyrithione (CuPT)); three unloaded engineered micro/nanomaterials (EMNMs); layered double hydroxides (LDH), silica nanocapsules (SiNC), polyurea microcapsules (PU); , and six novel EMNMs (loaded with each of the two biocides). The exposure tests were conducted on the larval stage (nauplii) of the brine shrimp Artemia salina and on two embryonic developmental stages of the European purple sea urchin Paracentrotus lividus. The findings indicate that the unloaded LDH and PU (i.e. both biocide-free EMNMs) have non/low toxic effects on both species. The unloaded SiNC, in contrast, exerted a mild toxic effect on the A. salina nauplii and P. lividus embryos. The free biocides presented different toxicity values, with ZnPT being more toxic than CuPT in the P. lividus assays. LDH-based pyrithiones demonstrated lower toxicity compared to the free forms of the state-of-the-art compounds, and constitute good candidates in terms of their antifouling efficacy.
اظهر المزيد [+] اقل [-]Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus النص الكامل
2019
Gutner-Hoch, Eldad | Martins, Roberto | Maia, Frederico | Oliveira, Tânia | Shpigel, Muki | Weis, Michal | Tedim, João | Benayahu, Yehuda
Antifouling booster biocides are chemicals used in protective paints to tackle the adhesion of fouling organisms to maritime artificial structures. However, they are also known to exert toxic effects on non-target organisms. Recent research developments have highlighted the potential use of engineered micro/nanomaterials (EMNMs) as carriers of antifouling booster biocides in order to control their release and to reduce the harmful effects on living biota. In the present study, we sought to assess the toxicity of two commercially-available booster biocides: (zinc pyrithione (ZnPT) and copper pyrithione (CuPT)); three unloaded engineered micro/nanomaterials (EMNMs); layered double hydroxides (LDH), silica nanocapsules (SiNC), polyurea microcapsules (PU); , and six novel EMNMs (loaded with each of the two biocides). The exposure tests were conducted on the larval stage (nauplii) of the brine shrimp Artemia salina and on two embryonic developmental stages of the European purple sea urchin Paracentrotus lividus. The findings indicate that the unloaded LDH and PU (i.e. both biocide-free EMNMs) have non/low toxic effects on both species. The unloaded SiNC, in contrast, exerted a mild toxic effect on the A. salina nauplii and P. lividus embryos. The free biocides presented different toxicity values, with ZnPT being more toxic than CuPT in the P. lividus assays. LDH-based pyrithiones demonstrated lower toxicity compared to the free forms of the state-of-the-art compounds, and constitute good candidates in terms of their antifouling efficacy. | published
اظهر المزيد [+] اقل [-]Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct النص الكامل
2019
Hepburn, Emily | Madden, Casey | Szabo, Drew | Coggan, Timothy L. | Clarke, Bradley | Currell, Matthew
The extent of per- and polyfluoroalkyl substances (PFAS) in groundwater surrounding legacy landfills is currently poorly constrained. Seventeen PFAS were analysed in groundwater surrounding legacy landfills in a major Australian urban re-development precinct. Sampling locations (n = 13) included sites installed directly in waste material and down-gradient from landfills, some of which exhibited evidence of leachate contamination including elevated concentrations of ammonia-N (≤106 mg/L), bicarbonate (≤1,740 mg/L) and dissolved methane (≤10.4 mg/L). Between one and fourteen PFAS were detected at all sites and PFOS, PFHxS, PFOA and PFBS were detected in all samples. The sum of detected PFAS (∑₁₄PFAS) varied from 26 ng/L at an ambient background site to 5,200 ng/L near a potential industrial point-source. PFHxS had the highest median concentration (34 ng/L; range: 2.6–280 ng/L) followed by PFOS (26 ng/L; range: 1.3–4,800 ng/L), PFHxA (19 ng/L; range: <LOQ – 46 ng/L) and PFOA (12 ng/L; range: 1.7–74 ng/L). Positive correlations between ∑₁₄PFAS, PFOA and other perfluoroalkyl carboxylic acids (PFCAs) (e.g. PFHxA) with typical leachate indicators including ammonia-N and bicarbonate were observed. In contrast, no such correlations were found with perfluoroalkyl sulfonic acids (PFSAs) (e.g., PFOS and PFHxS). In addition, a strong positive linear correlation (R² = 0.69) was found between the proportion of PFOA in the sum of detected perfluorinated alkylated acids (PFOA/∑PFAA) and ammonia-N concentrations in groundwater. This is consistent with previous research showing relatively high PFOA/∑PFAA in municipal landfill leachates, and more conservative behaviour (e.g. less sorption and reactivity) of PFCAs during subsurface transport compared to PFSAs. PFOA/∑PFAA in groundwater may therefore be a useful indicator of municipal landfill-derived PFAA. One site with significantly elevated PFOS and PFHxS concentrations (4,800 and 280 ng/L, respectively) appears to be affected by point-source industrial contamination, as landfill leachate indicators were absent.
اظهر المزيد [+] اقل [-]