خيارات البحث
النتائج 851 - 860 من 5,098
Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure
2018
He, Chang | Wang, Xianyu | Thái Phong, | Baduel, Christine | Gallen, Christie | Banks, Andrew | Bainton, Paul | English, Karin | Mueller, Jochen F.
Concentrations of nine organophosphate flame retardants (OPFRs) and eight polybrominated diphenyl ethers (PBDEs) were measured in samples of indoor dust (n = 85) and air (n = 45) from Australian houses, offices, hotels, and transportation (buses, trains, and aircraft). All target compounds were detected in indoor dust and air samples. Median ∑₉OPFRs concentrations were 40 μg/g in dust and 44 ng/m³ in indoor air, while median ∑₈PBDEs concentrations were 2.1 μg/g and 0.049 ng/m³. Concentrations of FRs were higher in rooms that contained carpet, air conditioners, and various electronic items. Estimated daily intakes in adults are 14000 pg/kg body weight/day and 330 pg/kg body weight/day for ∑₉OPFRs and ∑₈PBDEs, respectively. Our results suggest that for the volatile FRs such as tris(2-chloroethyl) phosphate (TCEP) and TCIPP, inhalation is expected to be the more important intake pathway compared to dust ingestion and dermal contact.
اظهر المزيد [+] اقل [-]Role of extracellular polymeric substances in the acute inhibition of activated sludge by polystyrene nanoparticles
2018
Feng, Li-Juan | Wang, Jing-Jing | Liu, Shu-Chang | Sun, Xiao-Dong | Yuan, Xian-Zheng | Wang, Shu-Guang
Microplastics and nanoplastics in aquatic systems have become a global concern because of their persistence and adverse consequences to ecosystems and potentially human health. Though wastewater treatment plants (WWTPs) are considered a potential source of microplastics in the environment, the role of extracellular polymeric substances (EPS) of activated sludge on the fate of nanoplastics is not clear. In this study, the role of EPS in the influence of polystyrene nanoparticles (PS-NPs) on the endogenous respiration of activated sludge was investigated for the first time. The results showed that the acute inhibition of activated sludge by PS-NPs was enhanced with increasing PS-NPs concentration. X-ray photoelectron spectroscopy (XPS) results indicate that the functional groups involved in the interactions between PS-NPs and EPS were carbonyl and amide groups and the side chains of lipids or amino acids. Furthermore, the Fourier transform infrared (FTIR) spectroscopy results show that the protein secondary structures in EPS were changed by PS-NPs and lead to the bioflocculation of activated sludge, which provides a better understanding on the fate of nanoplastics in WWTPs.
اظهر المزيد [+] اقل [-]Evaluation of the natural attenuation capacity of urban residential soils with ecosystem-service performance index (EPX) and entropy-weight methods
2018
Xie, Tian | Wang, Meie | Su, Chao | Chen, Weiping
Soils provide the service of attenuating and detoxifying pollutants. Such ability, natural attenuation capacity (NAC), is one of the most important ecosystem services for urban soils. We improved the ecosystem-service performance index (EPX) model by integrating with entropy weight determination method to evaluate the NAC of residential soils in Beijing. Eleven parameters related to the soil process of pollutants fate and transport were selected and 115 residential soil samples were collected. The results showed that bulk density, microbial functional diversity and soil organic matter had high weights in the NAC evaluation. Urban socio-economic indicators of residential communities such as construction age, population density and property & management fee could be employed in kinetic fittings of NAC. It could be concluded urbanization had significant impacts on NAC in residential soils. The improved method revealed reasonable and practical results, and it could be served as a potential measure for application to other quantitative assessment.
اظهر المزيد [+] اقل [-]Long-term effects of three different silver sulfide nanomaterials, silver nitrate and bulk silver sulfide on soil microorganisms and plants
2018
Schlich, Karsten | Hoppe, Martin | Kraas, Marco | Schubert, Jonas | Chanana, Munish | Hund-Rinke, Kerstin
Silver nanomaterials (AgNMs) are released into sewers and consequently find their way to sewage treatment plants (STPs). The AgNMs are transformed en route, mainly into silver sulfide (Ag₂S), which is only sparingly soluble in water and therefore potentially less harmful than the original AgNMs. Here we investigated the toxicity and fate of different sulfidized AgNMs using an exposure scenario involving the application of five different test materials (NM-300K, AgNO₃, Ag₂S NM-300K, Ag₂S NM and bulk Ag₂S) into a simulated STP for 10 days. The sewage sludge from each treatment was either dewatered or anaerobically digested for 35 days and then mixed into soil. We then assessed the effect on soil microorganisms over the next 180 days. After 60 days, a subsample of each test soil was used to assess chronic toxicity in oat plants (Avena sativa L) and a potential uptake into the plants. The effect of each AgNM on the most sensitive test organism was also tested without the application of sewage sludge. Although Ag sulfidized species are considered poorly soluble and barely bioavailable, we observed toxic effects on soil microorganisms. Furthermore, whether or not the AgNM was sulfidized before or during the passage through the STP, comparable effects were observed on ammonium oxidizing bacteria after sewage sludge application and incubation for 180 days. We observed the uptake of Ag into oat roots following the application of all test substances, confirming their bioavailability. The oat shoots generally containing less Ag than the roots.
اظهر المزيد [+] اقل [-]Characteristics and sources of trace elements in PM2.5 in two megacities in Sichuan Basin of southwest China
2018
Wang, Huanbo | Qiao, Baoqing | Zhang, Leiming | Yang, Fumo | Jiang, Xia
To characterize major trace elements in PM₂.₅ and associated sources in two megacities, Chengdu (CD) and Chongqing (CQ), in Sichuan Basin of southwest China, daily PM₂.₅ samples were collected at one urban site in each city from October 2014 to July 2015 and were analyzed for their contents of thirteen trace elements including four crustal elements (Al, Ca, Fe, and Ti), eight trace metals (K, Cr, Zn, Cu, Mn, Pb, Ni, and V), and As. Multiple approaches including correlation analysis, enrichment factor, principal component analysis, and conditional probability function (CPF) were applied to identify potential sources of these elements. Most of the measured trace elements in Sichuan Basin were found to have lower concentrations than in the other regions of China. K and Fe were the most abundant elements at CD with an annual mean concentrations of 720 ± 357 and 456 ± 248 ng m⁻³, accounting for 34.6% and 21.9% of the total analyzed trace elements, respectively. Ca presented the highest concentration among all of the elements at CQ with annual mean of 824 ± 633 ng m⁻³ (29.1% of the total). Crustal elements had the highest concentrations in spring while heavy metals had distinct seasonal variations typically with the highest concentrations in winter and the lowest in summer. Ti and Al were identified to be primarily from soil while most of the analyzed heavy metals (Cr, Mn, Cu, Zn, Pb, Ni) and As were from anthropogenic sources associated with coal combustion, industrial emission from glassmaking production and iron/steel manufacturing, and non-exhaust vehicle emission.
اظهر المزيد [+] اقل [-]Blood and urine cadmium concentrations and walking speed in middle-aged and older U.S. adults
2018
Kim, Junghoon | Garcia-Esquinas, Esther | Navas-Acien, Ana | Choi, Yoon-Hyeong
Reduced physical performance is an important feature of aging, and walking speed is a valid measure of physical performance and mobility in older adults. Previous epidemiological studies suggest that cadmium exposure, even at low environmental levels, may contribute to vascular, musculoskeletal, and cognitive dysfunction, which may all be associated with reductions in physical performance. To this end, we investigated the associations of blood and urine cadmium concentrations with walking speed in middle-aged and older adults in the U.S. general population. We studied U.S. adults from the National Health and Nutrition Examination Survey 1999 to 2002 who were ≥50 years of age, who had determinations of cadmium in blood or in urine, and who had measurements of the time taken to walk 20 feet. Walking speed (ft/sec) was computed as walked distance (20 ft) divided by measured time to walk (in seconds). The weighted geometric means of blood and urine cadmium were 0.49 [95% confidence interval (CI): 0.47, 0.52] μg/L and 0.37 (95% CI: 0.34, 0.42) ng/mL, respectively. After adjusting for sociodemographic, anthropometric, health-related behavioral, and clinical risk factors and inflammation markers, the highest (vs. lowest) quintile of blood cadmium was associated with a 0.18 (95% CI: 0.10, 0.25) ft/sec reduction in walking speed (p-Trend <0.001). No association was observed for urine cadmium levels with walking speed. Cadmium concentrations in blood, but not in urine, were associated with slower gait speed. Our findings add to the growing volume of evidence supporting cadmium's toxicity even at low levels of exposure.
اظهر المزيد [+] اقل [-]Evaluation of microplastic release caused by textile washing processes of synthetic fabrics
2018
De Falco, Francesca | Gullo, Maria Pia | Gentile, Gennaro | Di Pace, Emilia | Cocca, Mariacristina | Gelabert, Laura | Brouta-Agnésa, Marolda | Rovira, Angels | Escudero, Rosa | Villalba, Raquel | Mossotti, Raffaella | Montarsolo, Alessio | Gavignano, Sara | Tonin, Claudio | Avella, Maurizio
A new and more alarming source of marine contamination has been recently identified in micro and nanosized plastic fragments. Microplastics are difficult to see with the naked eye and to biodegrade in marine environment, representing a problem since they can be ingested by plankton or other marine organisms, potentially entering the food web. An important source of microplastics appears to be through sewage contaminated by synthetic fibres from washing clothes. Since this phenomenon still lacks of a comprehensive analysis, the objective of this contribution was to investigate the role of washing processes of synthetic textiles on microplastic release. In particular, an analytical protocol was set up, based on the filtration of the washing water of synthetic fabrics and on the analysis of the filters by scanning electron microscopy. The quantification of the microfibre shedding from three different synthetic fabric types, woven polyester, knitted polyester, and woven polypropylene, during washing trials simulating domestic conditions, was achieved and statistically analysed. The highest release of microplastics was recorded for the wash of woven polyester and this phenomenon was correlated to the fabric characteristics. Moreover, the extent of microfibre release from woven polyester fabrics due to different detergents, washing parameters and industrial washes was evaluated. The number of microfibres released from a typical 5 kg wash load of polyester fabrics was estimated to be over 6,000,000 depending on the type of detergent used. The usage of a softener during washes reduces the number of microfibres released of more than 35%. The amount and size of the released microfibres confirm that they could not be totally retained by wastewater treatments plants, and potentially affect the aquatic environment.
اظهر المزيد [+] اقل [-]Association of PM2.5 with sleep-disordered breathing from a population-based study in Northern Taiwan urban areas
2018
Shen, Yen-Ling | Liu, Wen-Te | Lee, Kang-Yun | Chuang, Hsiao-Chi | Chen, Hua-Wei | Chuang, Kai-Jen
Recent studies suggest that exposure to air pollution might be associated with severity of sleep-disordered breathing (SDB). However, the association between air pollution exposure, especially particulate matter with aerodynamic diameters <= 2.5 μm (PM₂.₅), and SDB is still unclear. We collected 4312 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of particulate matter with aerodynamic diameters <=10 μm (PM₁₀), PM₂.₅, nitrogen dioxide (NO₂), ozone (O₃) and sulfur dioxide (SO₂) with apnea-hypopnea index (AHI) and oxygen desaturation index (ODI) were investigated by generalized additive models. We found that an interquartile range (IQR) increase in 1-year mean PM₂.₅ (3.4 μg/m³) and NO₂ (2.7 ppb) was associated with a 4.7% and 3.6% increase in AHI, respectively. We also observed the association of an IQR increase in 1-year mean PM₂.₅ with a 2.5% increase in ODI. The similar pattern was found in the association of daily mean PM₂.₅ exposure with increased AHI. Moreover, participants showed significant AHI and ODI responses to air pollution levels in spring and winter. We concluded that exposure to PM₂.₅ was associated with SDB. Effects of air pollution on AHI and ODI were significant in spring and winter.
اظهر المزيد [+] اقل [-]Alteration behavior of mineral structure and hazardous elements during combustion of coal from a power plant at Huainan, Anhui, China
2018
Tang, Quan | Sheng, Wanqi | Li, Liyuan | Zheng, Liugen | Miao, Chunhui | Sun, Ruoyu
The alteration behavior of minerals and hazardous elements during simulated combustion (100–1200 °C) of a raw coal collected from a power plant were studied. Thermogravimetric analysis indicated that there were mainly four alteration stages during coal combustion. The transformation behavior of mineral phases of raw coal, which were detected by X-ray polycrystalline diffraction (XRD) technique, mainly relied on the combustion temperature. A series of changes were derived from the intensities of mineral (e.g. clays) diffraction peaks when temperature surpassed 600 °C. Mineral phases tended to be simple and collapsed to amorphous glass when temperature reached up to 1200 °C. The characteristics of functional groups for raw coal and high-temperature (1200 °C) ash studied by Fourier transform infrared spectroscopy (FTIR) were in accordance with the result obtained from XRD analysis. The volatilization ratios of Co, Cr, Ni and V increased consistently with the increase of combustion temperature, suggesting these elements were gradually released from the organic matter and inorganic minerals of coal.
اظهر المزيد [+] اقل [-]Physiological effects caused by microcystin-producing and non-microcystin producing Microcystis aeruginosa on medaka fish: A proteomic and metabolomic study on liver
2018
Le Manach, Séverine | Sotton, Benoit | Huet, Hélène | Duval, Charlotte | Paris, Alain | Marie, Arul | Yépremian, Claude | Catherine, Arnaud | Mathéron, Lucrèce | Vinh, Joelle | Edery, Marc | Marie, Benjamin
Cyanobacterial blooms have become a common phenomenon in eutrophic freshwater ecosystems worldwide. Microcystis is an important bloom-forming and toxin-producing genus in continental aquatic ecosystems, which poses a potential risk to Human populations as well as on aquatic organisms. Microcystis is known to produce along with various bioactive peptides, the microcystins (MCs) that have attracted more attention notably due to their high hepatotoxicity.To better understand the effects of cyanobacterial blooms on fish, medaka fish (Oryzias latipes) were sub-chronically exposed to either non-MC-producing or MC-producing living strains and, for this latter, to its subsequent MC-extract of Microcystis aeruginosa. Toxicological effects on liver have been evaluated through the combined approach of histopathology and ‘omics’ (i.e. proteomics and metabolomics). All treatments induce sex-dependent effects at both cellular and molecular levels. Moreover, the modalities of exposure appear to induce differential responses as the direct exposure to the cyanobacterial strains induce more acute effects than the MC-extract treatment. Our histopathological observations indicate that both non-MC-producing and MC-producing strains induce cellular impairments. Both proteomic and metabolomic analyses exhibit various biological disruptions in the liver of females and males exposed to strain and extract treatments. These results support the hypothesis that M. aeruginosa is able to produce bioactive peptides, other than MCs, which can induce toxicological effects in fish liver. Moreover, they highlight the importance of considering cyanobacterial cells as a whole to assess the realistic environmental risk of cyanobacteria on fish.
اظهر المزيد [+] اقل [-]