خيارات البحث
النتائج 881 - 890 من 5,149
Environmental concentrations and toxicology of 2,4,6-tribromophenol (TBP) النص الكامل
2018
Koch, Christoph | Sures, Bernd
2,4,6-Tribromophenol is the most widely produced brominated phenol. In the present review, we summarize studies dealing with this substance from an environmental point of view. We cover concentrations in the abiotic and biotic environment including humans, toxicokinetics as well as toxicodynamics, and show gaps of the current knowledge about this chemical.2,4,6-Tribomophenol occurs as an intermediate during the synthesis of brominated flame retardants and it similarly represents a degradation product of these substances. Moreover, it is used as a pesticide but also occurs as a natural product of some aquatic organisms. Due to its many sources, 2,4,6-tribromophenol is ubiquitously found in the environment. Nevertheless, not much is known about its toxicokinetics and toxicodynamics. It is also unclear which role the structural isomer 2,4,5-tribromophenol and several degradation products such as 2,4-dibromophenol play in the environment. Due to new flame retardants that enter the market and can degrade to 2,4,6-tribromophenol, this compound will remain relevant in future years – not only in aquatic matrices, but also in house dust and foodstuff, which are an important exposure route for humans.
اظهر المزيد [+] اقل [-]Evaluation of the toxic response induced by azoxystrobin in the non-target green alga Chlorella pyrenoidosa النص الكامل
2018
Lu, Tao | Zhu, Youchao | Chui, Kawai | Ke, Mingjing | Zhang, Meng | Tan, Chengxia | Fu, Zhengwei | Qian, Haifeng
The top-selling strobilurin, azoxystrobin (AZ), is a broad-spectrum fungicide that protects against many kinds of pathogenic fungi by preventing their ATP production. The extensive use of AZ can have negative consequences on non-target species and its effects and toxic mechanisms on algae are still poorly understood. In this work, Chlorella pyrenoidosa that had been grown in BG-11 medium was exposed to AZ (0.5–10 mg L⁻¹) for 10 d. The physiological and molecular responses of the algae to AZ treatment, including photosynthetic efficiency, lipid peroxidation level, antioxidant enzyme activities, as well as transcriptome-based analysis of gene expression, were examined to investigate the potential toxic mechanism. Results shows that the photosynthetic pigment (per cell) increased slightly after AZ treatments, indicating that the photosystem of C. pyrenoidosa may have been strengthened. Glutathione and ascorbate contents were increased, and antioxidant enzyme activities were induced to relieve oxidative damage (e.g., from lipid peroxidation) in algae after AZ treatment. Transcriptome-based analysis of gene expression combined with physiological verification suggested that the 5 mg L⁻¹ AZ treatment did not inhibit ATP generation in C. pyrenoidosa, but did significantly alter amino acid metabolism, especially in aspartate- and glutamine-related reactions. Moreover, perturbation of ascorbate synthesis, fat acid metabolism, and RNA translation was also observed, suggesting that AZ inhibits algal cell growth through multiple pathways. The identification of AZ-responsive genes in the eukaryotic alga C. pyrenoidosa provides new insight into AZ stress responses in a non-target organism.
اظهر المزيد [+] اقل [-]Risk assessment of microplastics in the ocean: Modelling approach and first conclusions النص الكامل
2018
Everaert, Gert | Van Cauwenberghe, Lisbeth | De Rijcke, Maarten | Koelmans, Albert A. | Mees, Jan | Vandegehuchte, Michiel | Janssen, Colin R.
We performed an environmental risk assessment for microplastics (<5 mm) in the marine environment by estimating the order of magnitude of the past, present and future concentrations based on global plastic production data. In 2100, from 9.6 to 48.8 particles m⁻³ are predicted to float around in the ocean, which is a 50-fold increase compared to the present-day concentrations. From a meta-analysis with effect data available in literature, we derived a safe concentration of 6650 buoyant particles m⁻³ below which adverse effects are not likely to occur. Our risk assessment (excluding the potential role of microplastics as chemical vectors) suggests that on average, no direct effects of free-floating microplastics in the marine environment are to be expected up to the year 2100. Yet, even today, the safe concentration can be exceeded in sites that are heavily polluted with buoyant microplastics. In the marine benthic compartment between 32 and 144 particles kg⁻¹ dry sediment are predicted to be present in the beach deposition zone. Despite the scarcity of effect data, we expect adverse ecological effects along the coast as of the second half of the 21st century. From then ambient concentrations will start to outrange the safe concentration of sedimented microplastics (i.e. 540 particles kg⁻¹ sediment). Additional ecotoxicological research in which marine species are chronically exposed to realistic environmental microplastic concentration series are urgently needed to verify our findings.
اظهر المزيد [+] اقل [-]Understanding context dependency in the response of forest understorey plant communities to nitrogen deposition النص الكامل
2018
Perring, Michael P. | Diekmann, Martin | Midolo, Gabriele | Schellenberger Costa, David | Bernhardt-Römermann, Markus | Otto, Johanna C.J. | Gilliam, Frank S. | Hedwall, Per-Ola | Nordin, Annika | Dirnböck, Thomas | Simkin, Samuel M. | Máliš, František | Blondeel, Haben | Brunet, Jörg | Chudomelová, Markéta | Durak, Tomasz | De Frenne, Pieter | Hédl, Radim | Kopecký, Martin | Landuyt, Dries | Li, Daijiang | Manning, Peter | Petřík, Petr | Reczyńska, Kamila | Schmidt, Wolfgang | Standovár, Tibor | Świerkosz, Krzysztof | Vild, Ondřej | Waller, Donald M. | Verheyen, Kris
Understorey communities can dominate forest plant diversity and strongly affect forest ecosystem structure and function. Understoreys often respond sensitively but inconsistently to drivers of ecological change, including nitrogen (N) deposition. Nitrogen deposition effects, reflected in the concept of critical loads, vary greatly not only among species and guilds, but also among forest types. Here, we characterize such context dependency as driven by differences in the amounts and forms of deposited N, cumulative deposition, the filtering of N by overstoreys, and available plant species pools. Nitrogen effects on understorey trajectories can also vary due to differences in surrounding landscape conditions; ambient browsing pressure; soils and geology; other environmental factors controlling plant growth; and, historical and current disturbance/management regimes. The number of these factors and their potentially complex interactions complicate our efforts to make simple predictions about how N deposition affects forest understoreys. We review the literature to examine evidence for context dependency in N deposition effects on forest understoreys. We also use data from 1814 European temperate forest plots to test the ability of multi-level models to characterize context-dependent understorey responses across sites that differ in levels of N deposition, community composition, local conditions and management history. This analysis demonstrated that historical management, and plot location on light and pH-fertility gradients, significantly affect how understorey communities respond to N deposition. We conclude that species' and communities' responses to N deposition, and thus the determination of critical loads, vary greatly depending on environmental contexts. This complicates our efforts to predict how N deposition will affect forest understoreys and thus how best to conserve and restore understorey biodiversity. To reduce uncertainty and incorporate context dependency in critical load setting, we should assemble data on underlying environmental conditions, conduct globally distributed field experiments, and analyse a wider range of habitat types.
اظهر المزيد [+] اقل [-]Improving the SoilPlusVeg model to evaluate rhizoremediation and PCB fate in contaminated soils النص الكامل
2018
Terzaghi, Elisa | Morselli, Melissa | Zanardini, Elisabetta | Morosini, Cristiana | Raspa, Giuseppe | Di Guardo, Antonio
Tools to predict environmental fate processes during remediation of persistent organic pollutants (POPs) in soil are desperately needed since they can elucidate the overall behavior of the chemical and help to improve the remediation process. A dynamic multimedia fate model (SoilPlusVeg) was further developed and improved to account for rhizoremediation processes. The resulting model was used to predict Polychlorinated Biphenyl (PCB) fate in a highly contaminated agricultural field (1089 ng/g d.w.) treated with tall fescue (Festuca arundinacea), a promising plant species for the remediation of contaminated soils. The model simulations allowed to calculate the rhizoremediation time (about 90 years), given the available rhizoremediation half-lives and the levels and fingerprints of the PCB congeners, to reach the legal threshold, to show the relevance of the loss processes from soil (in order of importance: degradation, infiltration, volatilization, etc.) and their dependence on meteorological and environmental dynamics (temperature, rainfall, DOC concentrations). The simulations showed that the effective persistence of PCBs in soil is deeply influenced by the seasonal variability. The model also allowed to evaluate the role of DOC as a possible enhancer of PCB degradation as a microorganism “spoon feeder” of PCBs in the soil solution. Additionally, we preliminary predicted how the contribution of PCB metabolites could modify the PCB fingerprint and their final total concentrations. This shows that the SoilPlusVeg model could be used in selecting the best choices for a sustainable rhizoremediation of a POP contaminated site.
اظهر المزيد [+] اقل [-]Exposure to environmental level phenanthrene induces a NASH-like phenotype in new born rat النص الكامل
2018
Guo, Jiaojiao | Wang, Chonggang | Guo, Zhizhun | Zuo, Zhenghong
More and more evidence indicates that persistent organic pollutants (POPs) are a risk factor for non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Phenanthrene (Phe) is a kind of POP which existed extensively in the environment, but whose toxicity on mammals has so far received less focus. Subcutaneously injection of Phe (0.5, 5, 50 μg/kg) for 21 days induced significant NAFLD/NASH symptoms in new born rats. Exposure to environmental levels of Phe decreased body weight and liver-somatic index; impaired histology of liver; influenced the peroxisome proliferator-activated receptor gamma (PPARγ) signaling and lipid metabolism in liver; stimulated oxidative stress in the rats' liver; induced the variation of NFκB pathway and liver inflammatory response; and caused liver fibrosis via transforming growth factor β1 (tgfβ1). We speculated that the subcutaneously injected Phe was transferred to the liver through blood circulation, which may have induced the elevation of PPARγ directly or indirectly, leading to liver steatosis. Excess lipid, acting as the first hit, stimulated the second hit factors - oxidative stress, inflammatory response and lipid peroxidation, and finally resulted in steatohepatitis and liver fibrosis.
اظهر المزيد [+] اقل [-]Photocatalytic decomposition of selected biologically active compounds in environmental waters using TiO2/polyaniline nanocomposites: Kinetics, toxicity and intermediates assessment النص الكامل
2018
Šojić Merkulov, Daniela V. | Despotović, Vesna N. | Banić, Nemanja D. | Armaković, Sanja J. | Finčur, Nina L. | Lazarević, Marina J. | Četojević-Simin, Dragana D. | Orčić, Dejan Z. | Radoičić, Marija B. | Šaponjić, Zoran V. | Čomor, Mirjana I. | Abramović, Biljana F.
A comprehensive study of the removal of selected biologically active compounds (pharmaceuticals and pesticides) from different water types was conducted using bare TiO₂ nanoparticles and TiO₂/polyaniline (TP-50, TP-100, and TP-150) nanocomposite powders. In order to investigate how molecular structure of the substrate influences the rate of its removal, we compared degradation efficiency of the initial substrates and degree of mineralization for the active components of pharmaceuticals (propranolol, and amitriptyline) and pesticides (sulcotrione, and clomazone) in double distilled (DDW) and environmental waters. The results indicate that the efficiency of photocatalytic degradation of propranolol and amitriptyline was higher in environmental waters: rivers (Danube, Tisa, and Begej) and lakes (Moharač, and Sot) in comparison with DDW. On the contrary, degradation efficacy of sulcotrione and clomazone was lower in environmental waters. Further, of the all catalysts applied, bare TiO₂ and TP-100 were found to be most effective in the mineralization of propranolol and amitriptyline, respectively, while TP-150 appeared to be the most efficient in terms of sulcotrione and clomazone mineralization. Also, there was no significant toxicity observed after the irradiation of pharmaceuticals or pesticides solutions using appropriate catalysts on rat hepatoma (H-4-II-E), mouse neuroblastoma (Neuro-2a), human colon adenocarcinoma (HT-29), and human fetal lung (MRC-5) cell lines. Subsequently, detection and identification of the formed intermediates in the case of sulcotrione photocatalytic degradation using bare TiO₂ and TP-150 showed slightly different pathways of degradation. Furthermore, tentative pathways of sulcotrione photocatalytic degradation were proposed and discussed.
اظهر المزيد [+] اقل [-]Organophosphate esters and phthalate esters in human hair from rural and urban areas, Chongqing, China: Concentrations, composition profiles and sources in comparison to street dust النص الكامل
2018
He, Ming-Jing | Lu, Jun-Feng | Ma, Jing-Ye | Wang, Huan | Du, Xiao-Fan
Human hair and street dust from rural and urban areas in Chongqing were collected to analyze Organophosphate esters (OPEs) and phthalate esters (PAEs). Concentrations of OPEs in urban hair were significantly higher than those in rural hair, whereas PAEs concentrations in rural hair were significantly higher than those in urban hair. Different composition patterns of OPEs were observed in rural and urban hair, where tris (2-chloroisopropyl) phosphate (TCIPP), tris (butyl) phosphate (TNBP) and triphenyl phosphate (TPHP) were the dominating analogues in rural hair, accounting for 62.1% of the OPEs burden, and tris (methylphenyl) phosphate (TMPP) exhibited a high contribution in urban hair, responsible for 51.3% of total OPEs, which differed from the composition profiles in corresponding street dust. Analogous composition patterns of PAEs were found in hair of both areas. Di-(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DNBP), diisobutyl phthalate (DIBP) and diethyl phthalate (DEP) were the most abundant analogues in hair samples, while DEHP was the predominant analogue in dust samples. No clear tendency was obtained between the increasing ages and the concentrations of both compounds. Most OPEs and PAEs congeners showed significantly positive correlation with one another in rural hair. On the contrary, different correlation patterns were observed in urban hair for OPEs and PAEs, indicating multiple or additional sources existed in urban areas. Significant correlations of OPEs and PAEs were found between hair and corresponding street dust samples, but poor correlations of OPEs and PAEs were observed between rural hair and rural indoor dust, suggesting that street dust may be a predominant exogenous source for human exposure to OPEs and PAEs in this area.
اظهر المزيد [+] اقل [-]Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy النص الكامل
2018
Liu, Shasha | Zhu, Yuanrong | Liu, Leizhen | He, Zhongqi | Giesy, John P. | Bai, Yingchen | Sun, Fuhong | Wu, Fengchang
Complexation and coagulation of plant-derived dissolved organic matter (DOM) by metal cations are important biogeochemical processes of organic matter in aquatic systems. Thus, coagulation and fractionation of DOM derived from aquatic plants by Ca(II), Al(III), and Fe(III) ions were investigated. Metal ion-induced removal of DOM was determined by analyzing dissolved organic carbon in supernatants after addition of these metal cations individually. After additions of metal ions, both dissolved and coagulated organic fractions were characterized by use of fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and Fourier transform infrared (FT-IR) spectroscopy. Addition of Ca(II), Fe(III) or Al(III) resulted in net removal of aquatic plant-derived DOM. Efficiencies of removal of DOM by Fe(III) or Al(III) were greater than that by Ca(II). However, capacities to remove plant-derived DOM by the three metals were less than which had been previously reported for humic materials. Molecular and structural features of plant-derived DOM fractions in associations with metal cations were characterized by changes in fluorescent components and infrared absorption peaks. Both aromatic and carboxylic-like organic matters could be removed by Ca(II), Al(III) or Fe(III) ions. Whereas organic matters containing amides were preferentially removed by Ca(II), and phenolic materials were selectively removed by Fe(III) or Al(III). These observations indicated that plant-derived DOM might have a long-lasting effect on water quality and organisms due to its poor coagulation with metal cations in aquatic ecosystems. Plant-derived DOM is of different character than natural organic matter and it is not advisable to attempt removal through addition of metal salts during treatment of sewage.
اظهر المزيد [+] اقل [-]Chronic exposure to copper and zinc induces DNA damage in the polychaete Alitta virens and the implications for future toxicity of coastal sites النص الكامل
2018
Watson, Gordon J. | Pini, Jennifer M. | Richir, Jonathan
Chronic exposure to copper and zinc induces DNA damage in the polychaete Alitta virens and the implications for future toxicity of coastal sites النص الكامل
2018
Watson, Gordon J. | Pini, Jennifer M. | Richir, Jonathan
Copper and zinc are metals that have been traditionally thought of as past contamination legacies. However, their industrial use is still extensive and current applications (e.g. nanoparticles and antifouling paints) have become additional marine environment delivery routes. Determining a pollutant's genotoxicity is an ecotoxicological priority, but in marine benthic systems putative substances responsible for sediment genotoxicity have rarely been identified. Studies that use sediment as the delivery matrix combined with exposures over life-history relevant timescales are also missing for metals. Here we assess copper and zinc's genotoxicity by exposing the ecologically important polychaete Alitta virens to sediment spiked with environmentally relevant concentrations for 9 months. Target bioavailable sediment and subsequent porewater concentrations reflect the global contamination range for coasts, whilst tissue concentrations, although elevated, were comparable with other polychaetes. Survival generally reduced as concentrations increased, but monthly analyses show that growth was not significantly different between treatments. The differential treatment mortality may have enabled the surviving worms in the high concentration treatments to capture more food thus removing any concentration treatment effects for biomass. Using the alkaline comet assay we confirm that both metals via the sediment are genotoxic at concentrations routinely found in coastal regions and this is supported by elevated DNA damage in worms from field sites. However, combined with the growth data it also highlights the tolerance of A. virens to DNA damage. Finally, using long term (decadal) monitoring data we show stable or increasing sediment concentrations of these metals for many areas. This will potentially mean coastal sediment is a significant mutagenic hazard to the benthic community for decades to come. An urgent reappraisal of the current input sources for these ‘old pollutants’ is, therefore, required.
اظهر المزيد [+] اقل [-]Chronic exposure to copper and zinc induces DNA damage in the polychaete Alitta virens and the implications for future toxicity of coastal sites النص الكامل
2018
Watson, G. J. | Pini, J. M. | Richir, Jonathan | Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth
peer reviewed | Copper and zinc are metals that have been traditionally thought of as past contamination legacies. However, their industrial use is still extensive and current applications (e.g. nanoparticles and antifouling paints) have become additional marine environment delivery routes. Determining a pollutant's genotoxicity is an ecotoxicological priority, but in marine benthic systems putative substances responsible for sediment genotoxicity have rarely been identified. Studies that use sediment as the delivery matrix combined with exposures over life-history relevant timescales are also missing for metals. Here we assess copper and zinc's genotoxicity by exposing the ecologically important polychaete Alitta virens to sediment spiked with environmentally relevant concentrations for 9 months. Target bioavailable sediment and subsequent porewater concentrations reflect the global contamination range for coasts, whilst tissue concentrations, although elevated, were comparable with other polychaetes. Survival generally reduced as concentrations increased, but monthly analyses show that growth was not significantly different between treatments. The differential treatment mortality may have enabled the surviving worms in the high concentration treatments to capture more food thus removing any concentration treatment effects for biomass. Using the alkaline comet assay we confirm that both metals via the sediment are genotoxic at concentrations routinely found in coastal regions and this is supported by elevated DNA damage in worms from field sites. However, combined with the growth data it also highlights the tolerance of A. virens to DNA damage. Finally, using long term (decadal) monitoring data we show stable or increasing sediment concentrations of these metals for many areas. This will potentially mean coastal sediment is a significant mutagenic hazard to the benthic community for decades to come. An urgent reappraisal of the current input sources for these ‘old pollutants’ is, therefore, required. Chronic exposure of zinc and copper via sediment at environmentally relevant concentrations induces DNA damage in a marine polychaete. © 2018 Elsevier Ltd
اظهر المزيد [+] اقل [-]