خيارات البحث
النتائج 881 - 890 من 7,280
Bacterial colonisation of plastic in the Rockall Trough, North-East Atlantic: An improved understanding of the deep-sea plastisphere
2022
Kelly, Max R. | Whitworth, Paul | Jamieson, Alan | Burgess, J Grant
Plastic pollution has now been found within multiple ecosystems across the globe. Characterisation of microbial assemblages associated with marine plastic, or the so-called ‘plastisphere’, has focused predominantly on plastic in the epipelagic zone. Whether this community includes taxa that are consistently enriched on plastic compared to surrounding non plastic surfaces is unresolved, as are the ecological implications. The deep sea is likely a final sink for most of the plastic entering the ocean, yet there is limited information on microbial colonisation of plastic at depth. The aim of this study was to investigate deep-sea microbial communities associated with polystyrene (PS) and polyurethane (PU) with Bath stone used as a control. The substrates (n = 15) were deployed in the Rockall Trough (Atlantic), and recovered 420 days later from a depth of 1796 m. To characterise the bacterial communities, 16S rRNA genes were sequenced using the Illumina MiSeq platform. A dominant core microbiome (taxa shared across all substrates) comprised 8% of total ASVs (amplicon sequence variant) and accounted for 92% of the total community reads. This suggests that many commonly reported members of the plastisphere are simply opportunistic which freely colonise any hard surface. Transiently associated species consisted of approximately 7% of the total community. Thirty genera were enriched on plastic (P < 0.05), representing 1% of the total community. The discovery of novel deep-sea enriched taxa included Aurantivirga, Algivirga, IheB3-7, Spirosoma, HTCC5015, Ekhidna and Calorithrix on PS and Candidatus Obscuribacter, Haloferula, Marine Methylotrophic Group 3, Aliivibrio, Tibeticola and Dethiosulfatarculus on PU. This small fraction of the microbiome include taxa with unique metabolic abilities and show how bacterial communities can be shaped by plastic pollution at depth. This study outlines a novel approach in categorising the plastisphere to elucidate the ecological implications of enriched taxa that show an affinity for colonising plastic.
اظهر المزيد [+] اقل [-]Behavior and toxic effects of Pb in a waterfowl model with oral exposure to Pb shots: Investigating Pb exposure in wild birds
2022
Sato, Hiroshi | Ishii, Chihiro | Nakayama, Shouta M.M. | Ichise, Takahiro | Saitō, Keisuke | Watanabe, Yukiko | Ogasawara, Kohei | Torimoto, Ryota | Kobayashi, Atsushi | Kimura, Kei | Johnson, Yuki N. (Yuki Nakamura) | Yamagishi, Junya | Ikenaka, Yoshinori | Ishizuka, Mayumi
Among wild birds, lead (Pb) exposure caused by ingestion of ammunition is a worldwide problem. We aimed to reveal the behavior and toxic effect of Pb caused by ingesting Pb shots in waterfowl. Four male, eight-week old Muscovy ducks (Cairina moschata) were given three Pb shots (approximately 240 mg in total) orally and then fed for 29 days after exposure, simulating a low-dose Pb exposure in wild waterfowl. During the breeding period, blood samples were collected 10 times, and fecal samples every day. Additionally, 22 fresh tissue and 6 bone samples were obtained from each duck through the dissection. Although there were no gross abnormalities, the maximum blood Pb concentration of each duck ranged from 0.6 to 3.7 mg/L, reaching a threshold concentration indicative of clinical symptoms (>0.5 mg/L). δ-aminolevulinic acid dehydratase declined one day after exposure and remained low throughout the feeding period. Hematocrit also tended to decrease, indicating signs of anemia. The highest Pb accumulation was observed in the bones, followed by the kidneys, intestinal tracts, and liver. High Pb accumulation in the bones, which are known to have a long Pb half-life, suggested that Pb would remain in the body and possibly affect bird health beyond 28 days after exposure. Gene expression analysis showed a significant increase in the expression of the toll-like receptor-3 gene, which is involved in virus discrimination in the liver, suggesting a disruption of the immune system. Microbiota analyses showed a correlation between the blood Pb concentration and the abundances of Lachnospiraceae and Ruminococcaceae, suggesting that Pb affects lipid metabolism. These results provide fundamental data on Pb exposure in wild birds and a new perspective on the damage such exposure causes.
اظهر المزيد [+] اقل [-]Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy
2022
Mainardis, Matia | Cecconet, Daniele | Moretti, Alessandro | Callegari, Arianna | Goi, Daniele | Freguia, Stefano | Capodaglio, Andrea G.
Water shortages are an issue of growing worldwide concern. Irrigated agriculture accounts for about 70% of total freshwater withdrawals globally, therefore alternatives to use of conventional sources need to be investigated. This paper critically reviews the application of treated wastewater for agricultural fertigation (i.e., water and nutrient recovery) considering different perspectives: legislation, agronomic characteristics, social acceptability, sustainability of treatment technologies. Critical issues that still need further investigation for a wider application of fertigation practices include accumulation of emerging contaminants in soils, microbiological and public health implications, and stakeholders' acceptance. A techno-economic methodological approach for assessing the sustainability of treated wastewater reuse in agriculture is subsequently proposed herein, which considers different possible local conditions (cultivated crops and effluent characteristics). The results showed that tailoring effluent characteristics to the desired nutrient composition could enhance the process economic sustainability; however, water savings have a major economic impact than fertilizers’ savings, partly due to limited P reuse efficiency. The developed methodology is based on a practical approach and may be generalized to most agricultural conditions, to evaluate and encourage safe and efficient agricultural wastewater reuse practices.
اظهر المزيد [+] اقل [-]Decisive role of ozone formation control in winter PM2.5 mitigation in Shenzhen, China
2022
Tang, Meng-Xue | Huang, Xiao Feng | Sun, Tian-Le | Cheng, Yong | Luo, Yao | Chen, Zheng | Lin, Xiao-Yu | Cao, Li-Ming | Zhai, Yu-Hong | He, Ling-Yan
During the COVID-19 lockdown, atmospheric PM₂.₅ in the Pearl River Delta (PRD) showed the highest reduction in China, but the reasons, being a critical question for future air quality policy design, are not yet clear. In this study, we analyzed the relationships among gaseous precursors, secondary aerosols and atmospheric oxidation capacity in Shenzhen, a megacity in the PRD, during the lockdown period in 2020 and the same period in 2021. The comprehensive observational datasets showed large lockdown declines in all primary and secondary pollutants (including O₃). We found that, however, the daytime concentrations of secondary aerosols during the lockdown period and normal period were rather similar when the corresponding odd oxygen (Oₓ≡O₃+NO₂, an indicator of photochemical processing avoiding the titration effect of O₃ by freshly emitted NO) were at similar levels. Therefore, reduced Oₓ, rather than the large reduction in precursors, was a direct driver to achieve the decline in secondary aerosols. Moreover, Oₓ was also found to determine the spatial distribution of intercity PM₂.₅ levels in winter PRD. Thus, an effective strategy for winter PM₂.₅ mitigation should emphasize on control of winter O₃ formation in the PRD and other regions with similar conditions.
اظهر المزيد [+] اقل [-]Valorisation of agri-food waste to fertilisers is a challenge in implementing the circular economy concept in practice
2022
Chojnacka, K. | Moustakas, K. | Mikulewicz, M.
The area of agricultural wastes valorisation to fertilizers is attracting growing attention because of the increasing fertilizer prices of fertilizers and the higher costs of waste utilization. Despite the scientific and political interest in the concept of circular economy, few studies have considered the practical approach towards the implementation of elaborated technologies. This article outlines innovative strategies for the valorisation of different biobased wastes into fertilizers. The present work makes a significant contribution to the field of new ideas for waste biomass management to recover significant fertilizer nutrients. These results emphasize the importance of the biomass use as a base of renewable resources, which has recently gained special importance, especially in relation to the outbreak of pandemia and war. Broken supply chains and limited access to deposits of raw materials used in fertilizer production (natural gas, potassium salts) meant that now, as never before, it has become more important and feasible to implement the idea of a circular economy and a green deal. We have obtained satisfactory results that demonstrate that appropriate management of biological waste (originating from agriculture, food processing, aquaculture, forest, pharmaceutical industry, and other branches of industry, sewage sludge) will not only reduce environmental nuisance (reducing waste heaps), but will also allow recovery of valuable materials, such as nitrogen (especially valuable amino acids), phosphorus, potassium, microelements, and biologically active substances with properties that stimulate plant growth. The results reported here provide information on production of biobased plant protection products (bioagrochemicals) from agri-food waste. This work reports an overview of biopesticides and biofertilisers production technologies and summarizes their properties and the mechanisms of action.
اظهر المزيد [+] اقل [-]Spent waste from edible mushrooms offers innovative strategies for the remediation of persistent organic micropollutants: A review
2022
Ghose, Anamika | Mitra, Sudip
Urgent and innovative strategies for removal of persistent organic micropollutants (OMPs) in soil, groundwater, and surface water are the need of the hour. OMPs detected in contaminated soils and effluents from wastewater treatment plants (WWTPs) are categorized as environmentally persistent pharmaceutical pollutants (EPPPs), and endocrine disrupting chemicals (EDCs), their admixture could cause serious ecological issues to the non-target species. As complete eradication of OMPs is not possible with the extant conventional WWTPs technology, the inordinate and reckless application of OMPs negatively impacts environmental regenerative and resilience capacity. Therefore, the cardinal focus of this review is the bioremediation of persistent OMPs through efficient application of an agro-waste, i.e. spent mushroom waste (SMW). This innovative, green, long-term strategy embedded in the circular economy, based on state of the art information is comprehensively assessed in this paper. SMW accrues ligninolytic enzymes such as laccase and peroxidase, with efficient mechanism to facilitate biodegradation of recalcitrant organic pollutants. It is vital in this context that future research should address immobilization of such enzymes to overcome quantitative and qualitative issues obstructing their widespread use in biodegradation. Therefore, dual benefit is gained from cultivating critical cash crops like mushrooms to meet the escalating demand for food resources and to aid in biodegradation. Hence, mushroom cultivation has positive environmental, social, and economic implications in developing countries like India.
اظهر المزيد [+] اقل [-]Increasing impacts of the relative contributions of regional transport on air pollution in Beijing: Observational evidence
2022
Tan, Qixin | Ge, Baozhu | Xu, Xiaobin | Gan, Lu | Yang, Wenyi | Chen, Xueshun | Pan, Xiaole | Wang, Wei | Li, Jie | Wang, Zifa
Benefiting from the pollution controls implemented by the Chinese government, the concentrations of PM₂.₅, SO₂, NO₂ and CO showed a significant decrease in Beijing during 2013–2017. In this study, an observation-based method was employed to estimate the relative contributions of regional transport (MaxRTC) and local emissions (MinLEC) to air pollutant levels during 2013–2017 in Beijing. The results showed that the MaxRTC to SO₂ and PM₂.₅ increased significantly over the five years, while those to CO and NO₂ changed little. Furthermore, the difference in the emissions control efficiency (ΔECE) between Beijing (receptor region) and Shijiazhuang (source region), which refers to the concentration changes corresponding to unit emission changes of a certain air pollutant between the two regions, was introduced to verify the estimated variation in MaxRTC and MinLEC over 2013–2017. The negative value of ΔECE found for PM₂.₅ and SO₂ supports the conclusion of an increasing effect of regional transport. This implies that local emissions control alone is not adequate for mitigating Beijing's air pollution, especially with the demand for continuously improving air quality. Joint prevention and control with regard to air quality on a regional scale is more important and urgent in the next Five-Year Plan.
اظهر المزيد [+] اقل [-]PM2.5-mediated photochemical reaction of typical toluene in real air matrix with identification of products by isotopic tracing and FT-ICR MS
2022
Li, Qianqian | Liu, Yalu | Wang, Mengjing | Su, Guijin | Wang, Qingliang | Zhao, Xu | Zhang, Qifan | Meng, Jing | Shi, Bin
The sight into photoconversion of toluene, a ubiquitous typical pollutant, attentively by the involvement of PM2.5 in the real air environment is crucial for controlling haze pollution. Compared with the large-size PM2.5 on normal day (PM2.5-ND), the PM2.5 on haze day (PM2.5-HD) formed of small particle agglomerates featured greater oxidation capability, evidenced by the valence distribution of sulfur species. Notably, PM2.5-HD had abundant O₂⁻• and •OH and participated in the photochemical reaction of toluene, giving it a greater toluene conversion with a first-order kinetic rate constant of 0.4 d⁻¹ on haze day than on normal day (0.2 d⁻¹). During the toluene photoconversion, isotopic labelling traced small molecules including benzene and newfound pentane, ethylbenzene, 1,3,8-p-menthatriene and 4-methyl-1-pentanone benzene that could be formed by methyl breakage, ring opening, fragmentation reforming and addition reaction of toluene. Given ADMET properties, 1,3,8-p-menthatriene was assigned high priority since it had poor metabolism, low excretion and severe toxicity, while benzene and 4-methyl-1-pentanone benzene should also be noticeable. FT-ICR MS results indicated that toluene could create multiple macromolecular products that are more sensitive to SOA generation in haze air matrix with broader carbon number and O/C, more oxygenated substitution with CHO/CHON occupying by 81.4%, lower DBEₐᵥₑᵣₐgₑ at 4.66 and higher OSC‾ at −1.60 than normal air matrix. Accordingly, a photochemical reaction mechanism for toluene in real air atmosphere was proposed. The stronger oxidation property of PM2.5 not only facilitated toluene to generate small molecules but also boosted the conversion of intermediates to oxygenated macromolecular products, contributing to the formation of SOA.
اظهر المزيد [+] اقل [-]Fishing in troubled waters: Limited stress response to natural and synthetic microparticles in brown shrimp (Crangon crangon)
2022
Korez, Špela | Gutow, Lars | Saborowski, Reinhard
Marine invertebrates inhabiting estuaries and coastal areas are exposed to natural suspended particulate matter (SPM) like clay or diatom shells but also to anthropogenic particles like microplastics. SPM concentrations may reach 1 g per liter and more, comprising hundreds of millions of items in the size range of less than 100 μm. Suspension feeders and deposit feeders involuntarily ingest these particles along with their food. We investigated whether natural and anthropogenic microparticles at concentrations of 20 mg L⁻¹, which correspond to natural environmental SPM concentrations in coastal marine waters, are ingested by the brown shrimp Crangon crangon and whether these particles induce an oxidative stress response in digestive gland tissue. Shrimp were exposed to clay, silica, TiO₂, polyvinyl chloride (PVC), or polylactide microplastics (PLA) for 6, 12, 24, and 48 h, respectively. The activities of the anti-oxidative enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were measured. All five particle types were ingested by the shrimp along with food. The presence of the particles in the shrimp stomach was verified by scanning electron microscopy. The activities of the anti-oxidative enzymes did not vary between animals exposed to different types of microparticles and control animals that did not receive particles. The temporal activity differed between the three enzymes. The lack of a specific biochemical response may reflect an adaptation of C. crangon to life in an environment where frequent ingestion of non-digestible microparticles is unavoidable and continuous maintenance of inducible biochemical defense would be energetically costly. Habitat characteristics as well as natural feeding habits may be important factors to consider in the interpretation of hazard and species-specific risk assessment.
اظهر المزيد [+] اقل [-]Isolation, characterization and industrial application of a Cladosporium herbarum fungal strain able to degrade the fungicide imazalil
2022
Papazlatani, Christina V. | Kolovou, Maria | Gkounou, Elisabeth E. | Azis, Konstantinos | Mavriou, Zografina | Testembasis, Stefanos | Karaoglanidis, George S. | Ntougias, Spyridon | Karpouzas, Dimitrios G.
Imazalil (IMZ) is an imidazole fungicide commonly used by fruit-packaging plants (FPPs) to control fungal infections during storage. Its application leads to the production of pesticide-contaminated wastewaters, which, according to the European Commission, need to be treated on site. Considering the lack of efficient treatment methods, biodepuration systems inoculated with tailored-made inocula specialized on the removal of such persistent fungicides appear as an appropriate solution. However, nothing is known about the biodegradation of IMZ. We aimed to isolate and characterize microorganisms able to degrade the recalcitrant fungicide IMZ and eventually to test their removal efficiency under near practical bioengineering conditions. Enrichment cultures from a soil receiving regular discharges of effluents from a FPP, led to the isolation of a Cladosporium herbarum strain, which showed no pathogenicity on fruits, a trait essential for its biotechnological exploitation in FPPs. The fungus was able to degrade up to 100 mg L⁻¹ of IMZ. However, its degrading capacity and growth was reduced at increasing IMZ concentrations in a dose-dependent manner, suggesting the involvement of a detoxification rather than an energy-gain mechanism in the dissipation of IMZ. The isolate could tolerate and gradually degrade the fungicides fludioxonil (FLD) and thiabendazole (TBZ), also used in FPPs and expected to coincide alongside IMZ in FPP effluents. The capacity of the isolate to remove IMZ in a practical context was evaluated in a benchtop immobilized-cell bioreactor fed with artificial IMZ-contaminated wastewater (200 mg L⁻¹). The fungal strain established in the reactor, completely dominated the fungal community and effectively removed >96% of IMZ. The bioreactor also supported a diverse bacterial community composed of Sphingomonadales, Burkholderiales and Pseudomonadales. Our study reports the isolation of the first IMZ-degrading microorganism with high efficiency to remove IMZ from agro-industrial effluents under bioengineering conditions.
اظهر المزيد [+] اقل [-]