خيارات البحث
النتائج 891 - 900 من 4,935
Cd contamination status and cost-benefits analysis in agriculture soils of Yangtze River basin النص الكامل
2019
Zhou, Xi-Yin | Wang, Xiuru
Soil is a fundamental carrier to support for human living and development and has been polluted seriously by heavy metals. This fact highlights the urgency to realize soil heavy metal pollution prevention through soil heavy metals contamination status assessment and root cause analysis. The previous research tends to focus status assessment and source identification without consideration of economic aspect. This study realized the systematic analysis from status assessment, sources identification and economic-environmental cost-benefits analysis in the Yangtze River basin. Through the spatial difference comparison among the provinces of upper, middle and lower in the Yangtze River basin, it revealed that anthropogenic influence is the main reason caused the current Cd contamination in Yangtze River basin. An interesting finding is that the human caused Cd concentration contribution amount is nearly the same between upstream and downstream which is all about 0.1 mg/kg, while they have quite different economic scale. It indicated that due to the difference of the scale and structure of local economy, and the level of cleaner production and pollution treatment, some regions could own high economic-benefits and low environmental cost, which it is opposite in other regions. The geographic location and natural resources is the root cause to form the environmental cost-economic benefits difference among regions. The convenient traffic promoted downstream to develop large amount and high quality of economy. The natural mineral resources promoted midstream to develop resources based economy. The poor condition of traffic and natural resources has restricted the development of Qinghai province, and made it has the highest Cd pollution intensity. The results would provide effective economic management measures for better soil quality and sustainable development goals achievement.
اظهر المزيد [+] اقل [-]Quantitative assessment of photosynthetic activity of Chlorella (Class Trebouxiophyceae) adsorbed onto soil by using fluorescence imaging النص الكامل
2019
Nam, Sun-Hwa | Lee, Jieun | An, Youn-Joo
In the present study, we evaluate our previously developed non-destructive soil algal toxicity method using species from a different class of algae; Class Trebouxiophyceae (Chlorella vulgaris and Chlorella sorokiniana), and directly measure the photosynthetic activity of these species adsorbed onto the soil as a new toxicity endpoint. This study shows that non-destructive soil algal toxicity method is applicable to non-specific test species, including those of Class Trebouxiophyceae as well as Class Chlorophyceae (Chlorococcum infusionum and Chlamydomonas reinhardtii). Furthermore, by performing photosynthesis image analysis, we verify that it is possible to measure the photosynthetic activity of soil algae Chlorella vulgaris adsorbed onto soils without the need to extract algal cells from the soil. We propose that the non-destructive soil algal toxicity method represents a novel technique for 1) evaluating pollutants in soil using non-specific algae and 2) conveniently and rapidly assessing the photosynthetic activity of soil algae Chlorella vulgaris adsorbed onto soil as a new toxicity endpoint.
اظهر المزيد [+] اقل [-]Using multivariate statistical analyses to identify and evaluate the main sources of contamination in a polluted river near to the Liaodong Bay in Northeast China النص الكامل
2019
Bu, Hongmei | Song, Xianfang | Zhang, Yuan
Using multivariate statistical analysis, the study evaluated anthropogenic sources of river water contamination and their relationships with river water quality in the Haicheng River basin near to the Liaodong Bay in Northeast China. The results showed that nitrogen (N) and phosphorous (P) were identified as the main pollutants in the river water by factor analysis. Human population and elevational gradient were all significantly correlated with N, P, and other water quality variables in correlation analysis and explained chemical oxygen demand (COD), N, and P variables from 23.9% (TN) to 53.1% (NH3+-N) of the total variances in regression analysis, indicating that population and its distribution were all responsible for river contaminations, especially for COD, N, and P contaminations. The excessive applications of fertilizers and pesticides were all positively correlated with nitrogen variables and nitrogen pollution factor in correlation analysis, suggesting that agricultural activities were contributed to the river nitrogen pollution. Due to inadequate or lack wastewater treatment facilities, huge amounts of domestic sewage and industrial effluents were released into the river, becoming the predominant anthropogenic sources for the river water deterioration of COD, N, and P. Multivariate statistical analysis provided useful tools to correlate sources of contamination with water quality data. This approach will provide a better management for river pollution control in a human-driven river ecosystem.
اظهر المزيد [+] اقل [-]Influence of bacterial community composition and soil factors on the fate of phenanthrene and benzo[a]pyrene in three contrasting farmland soils النص الكامل
2019
Zhu, Qinghe | Wu, Yucheng | Zeng, Jun | Wang, Xingxiang | Zhang, Taolin | Lin, Xiangui
The fate of polycyclic aromatic hydrocarbons (PAHs) determines their potential risk in soil, which may be directly affected by abiotic conditions and indirectly through the changes in decomposer communities. In comparison, the indirect effects on the fate remain largely elusive. In this study, the fate of phenanthrene and benzo[a]pyrene and the corresponding bacterial changes were investigated in three contaminated farmland soils using a ¹⁴C tracer method and Miseq sequencing. The results showed that most benzo[a]pyrene was consistently extractable with dichloromethane (DCM) after the 60-day incubation (60.4%–78.2%), while phenanthrene was mainly mineralized to CO₂ during the 30-day incubation (40.4%–58.7%). Soils from Guangzhou (GZ) showed a different distribution pattern of ¹⁴C-PAHs exemplified by low mineralization and disparate bound residue formation. The PAH fate in the Shenyang (SY) and Nanjing (NJ) soils were similar to each other than to that in the GZ soil. The fate in the GZ soil seemed to be linked to the distinct edaphic properties, such as organic matter content, however soil microbial community could have influenced the distribution pattern of PAHs. This potential role of microorganisms was reflected by the unique changes in the copy numbers of Gram positive RHDα gene, and by the distinct shifts in bacterial community composition during the incubation. A quite different shift in bacterial communities was found in the GZ microcosms which may influence PAH mineralization and non-extractable residue (NER) formation.
اظهر المزيد [+] اقل [-]PAHs increase the production of extracellular vesicles both in vitro in endothelial cells and in vivo in urines from rats النص الكامل
2019
Le Goff, Manon | Lagadic-Gossmann, Dominique | Latour, Remi | Podechard, Normand | Grova, Nathalie | Gauffre, Fabienne | Chevance, Soizic | Burel, Agnès | Appenzeller, Brice M.R. | Ulmann, Lionel | Sergent, Odile | Le Ferrec, Eric
Environmental contaminants, to which humans are widely exposed, cause or worsen several diseases, like cardiovascular diseases and cancers. Among these molecules, polycyclic aromatic hydrocarbons (PAHs) stand out since they are ubiquitous pollutants found in ambient air and diet. Because of their toxic effects, public Health agencies promote development of research studies aiming at increasing the knowledge about PAHs and the discovery of biomarkers of exposure and/or effects.Extracellular vesicles (EVs), including small extracellular vesicles (S-EVs or exosomes) and large extracellular vesicles (L-EVs or microvesicles), are delivery systems for multimolecular messages related to the nature and status of the originating cells. Because they are produced by all cells and detected within body fluids, EV releases could act as cell responses and thereby serve as biomarkers.To test whether EVs can serve as biomarkers of PAHs exposure, we evaluate the effects of these pollutants on EV production using an in vitro approach (human endothelial cell line, HMEC-1) and an in vivo approach (urine samples from PAHs-exposed rats). Our study indicates that, i) PAH exposure increases in vitro the EV production by endothelial cells and in vivo the release of EVs in urine, and that the stimulating effects of PAHs concern both S-EVs and L-EVs; ii) PAH exposure and more particularly exposure to B[a]P, can influence the composition of exosomes produced by endothelial cells; iii) the aryl hydrocarbon receptor, a cytosolic receptor associated to most deleterious effects of PAHs, would be involved in the PAH effects on the release of S-EVs, but not L-EVs.These results suggest that EVs may have utility for monitoring exposure to PAHs, and more particularly to B[a]P, considered as reference PAH, and to detect the related early cellular response prior to end-organ damages.
اظهر المزيد [+] اقل [-]Enhanced and selective adsorption of Hg2+ to a trace level using trithiocyanuric acid-functionalized corn bract النص الكامل
2019
Lin, Guo | Wang, Shixing | Zhang, Libo | Hu, Du | Cheng, Song | Fu, Likang | Xiong, Chao
A novel trithiocyanuric acid-modified corn bract (TCA-CCB) was prepared, and its removal properties for Hg²⁺ were investigated. TCA-CCB showed a remarkable absorbability for Hg²⁺ in mixed ion solutions. Adsorption kinetics experiments indicated that the removal of Hg²⁺ on TCA-CCB was quick, with a removal rate of 99.07% within 5 min. In addition, the removal rate of Hg²⁺ exceeded 98% over all pH conditions. The adsorption process can be best described by pseudo-second-order kinetic and Hill isotherm models. The saturated adsorption capacity of TCA-CCB for Hg²⁺ was 390 mg/g. The TCA-CCB could efficiently adsorb Hg²⁺ from the simulated wastewater and reduce the Hg²⁺ concentration from 10 ppm to 12.35 ppb, which was lower than the greatest allowable value of 50 ppb and satisfied the emission standards required by the Chinese government. Moreover, the removal rate of Hg²⁺ was beyond 99% after three cycles. The results of the zeta potential and X-ray photoelectron spectroscopy (XPS) implied that the chelation and ion exchange between amino/thiol groups and Hg²⁺ played a significant role in the improvement of the adsorption properties.The corn bract modified by trithiocyanuric acid exhibits apparent advantages in the removal of Hg²⁺ from ppm to ppb due to its high selectivity, adsorption capacity and stability.
اظهر المزيد [+] اقل [-]Seasonal variation of chemical characteristics of fine particulate matter at a high-elevation subtropical forest in East Asia النص الكامل
2019
Lee, Celine S.L. | Chou, C.C.-K. | Cheung, H.C. | Tsai, C.-Y. | Huang, W.-R. | Huang, S.-H. | Chen, M. J. | Liao, H.-T. | Wu, C.-F. | Tsao, T.-M. | Tsai, M.-J. | Su, T. C.
The aim of this study was to chemically characterize the fine particulate matter (PM₂.₅) at a subtropical forest in East Asia under the influences of anthropogenic and biogenic sources and a complex topographic setting. Four seasonal campaigns were conducted at the Xitou Experimental Forest in central Taiwan from the winter of 2013 to the autumn of 2014. The results indicated that the ambient levels and chemical features of PM₂.₅ exhibited pronounced seasonal variations. Non-sea-salt sulfate (nss-SO₄²⁻) constituted the major component of PM₂.₅, followed by ammonium (NH₄⁺) and nitrate (NO₃⁻) during winter, summer and autumn. However, it was revealed that the mass fraction of NO₃⁻ increased to be comparable with that of nss-SO₄²⁻ in springtime. The mass contribution of secondary organic carbon (SOC) to PM₂.₅ peaked in summer (13.2%), inferring the importance of enhanced photo-oxidation reactions in SOC formation. Diurnal variations of O₃ and SO₂ coincided with each other, suggesting the transport of aged pollutants from distant sources, whereas CO and NOₓ were shown to be under the influences of both local and regional sources. Notably high sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) were observed, which were 0.93 ± 0.05 and 0.39 ± 0.20, respectively. Precursor gases (i.e. SO₂ and NOₓ) could be converted to sulfate and nitrate during the transport by the uphill winds. Furthermore, due to the high relative humidity at Xitou, enhanced aqueous-phase and/or heterogeneous reactions could further contribute to the formation of sulfate and nitrate at the site. This study demonstrated the significant transport of urban pollutants to a subtropical forest by the mountain-valley circulations as well as the long-range transport from regional sources, whereas the implications of which for regional climate change necessitated further investigation.
اظهر المزيد [+] اقل [-]Associations of chemical composition and sources of PM2.5 with lung function of severe asthmatic adults in a low air pollution environment of urban Nagasaki, Japan النص الكامل
2019
Ng, Chris Fook Sheng | Hashizume, Masahiro | Obase, Yasushi | Doi, Masataka | Tamura, Kei | Tomari, Shinya | Kawano, Tetsuya | Fukushima, Chizu | Matsuse, Hiroto | Chung, Yeonseung | Kim, Yoonhee | Kunimitsu, Kenichi | Kohno, S. (Shigeo) | Mukae, Hiroshi
Previous studies have linked ambient PM₂.₅ to decreased pulmonary function, but the influence of specific chemical elements and emission sources on the severe asthmatic is not well understood. We examined the mass, chemical constituents, and sources of PM₂.₅ for short-term associations with the pulmonary function of adults with severe asthma in a low air pollution environment in urban Nagasaki, Japan. We recruited 35 asthmatic adults and obtained the daily record of morning peak expiratory flow (PEF) in spring 2014–2016. PM₂.₅ filters were extracted from an air quality monitoring station (178 days) and measured for 27 chemical elements. Source apportionment was performed using Positive Matrix Factorization (PMF). We fitted generalized linear model with generalized estimating equation (GEE) method to estimate changes in PEF (from personal monthly maximum) and odds of severe respiratory deterioration (first ≥ 15% PEF reduction within a 1-week interval) associated with mass, constituents, and sources of PM₂.₅, with adjustment for temperature and relative humidity. Constituent sulfate (SO₄²⁻) and PM₂.₅ from oil combustion and traffic were associated with reduced PEF. An interquartile range (IQR) increase in SO₄²⁻ (3.7 μg/m³, average lags 0–1) was associated with a decrease of 0.38% (95% confidence interval = −0.75% to −0.001%). An IQR increase in oil combustion and traffic-sourced PM₂.₅ (2.64 μg/m³, lag 1) was associated with a decrease of 0.33% (−0.62% to −0.002%). We found a larger PEF decrease associated with PM₂.₅ from dust/soil on Asian Dust days. There was no evidence linking total mass and metals to reduced pulmonary function. The ventilatory capacity of adults with severe asthma is susceptible to specific constituents/sources of PM₂.₅ such as sulfate and oil combustion and traffic despite active self-management of asthma and low air pollution levels in the study location.
اظهر المزيد [+] اقل [-]Fe@C carbonized resin for peroxymonosulfate activation and bisphenol S degradation النص الكامل
2019
Liu, Yang | Guo, Hongguang | Zhang, Yongli | Cheng, Xin | Zhou, Peng | Wang, Jingquan | Li, Wei
Aiming at realizing heavy metal recycling and resource utilization, a carbon-based iron catalyst (Fe@C) was synthesized through a resin carbonization method, and adopted for peroxymonosulfate (PMS) activation to remove bisphenol S (BPS), an emerging aquatic contaminant. This study demonstrated that Fe@C exhibited excellent catalytic potential for BPS degradation with a relatively low activation energy (Ea = 29.90 kJ/mol). Kinetic factors affecting the activation performance were thoroughly investigated. The obtained results indicated that Fe@C composite exhibited the superior uniformity with carbon as the framework and granular iron oxide as the coverage. pH increase could cause the inhibitive effect on BPS degradation, while the increasing catalyst loading (0.05–0.5 g/L) was conducive for the catalytic performance of Fe@C, with an optimal PMS concentration at 1.0 mM. A negative influence on BPS degradation was obtained in the presence of SO42−, HCO3− and lower concentration of Cl− (0–20 mM), compared to the promotion at higher concentration of Cl− (>50 mM). Based on the electron spin resonance (ESR) monitoring and radical scavenging results, it is demonstrated that singlet oxygen, a non-radical species, emerged together with ·SO4− and ·OH for BPS degradation. A three-channel catalytic mechanism was verified through typical characterizations. Furthermore, the degradation pathway of BPS was proposed based on the identified intermediates. This novel carbon-based activator for PMS showed notable potential for the waste resin recycling and water decontamination.A novel Fe-based activator carbonized from a saturated resin exhibits excellent performance for Bisphenol S degradation with activated peroxymonosulfate.
اظهر المزيد [+] اقل [-]Environmentally relevant methylmercury exposure reduces the metabolic scope of a model songbird النص الكامل
2019
Gerson, Alexander R. | Cristol, Daniel A. | Seewagen, Chad L.
For most birds, energy efficiency and conservation are paramount to balancing the competing demands of self-maintenance, reproduction, and other demanding life history stages. Yet the ability to maximize energy output for behaviors like predator escape and migration is often also critical. Environmental perturbations that affect energy metabolism may therefore have important consequences for fitness and survival. Methylmercury (MeHg) is a global pollutant that has wide-ranging impacts on physiological systems, but its effects on the metabolism of birds and other vertebrates are poorly understood. We investigated dose-dependent effects of dietary MeHg on the body composition, basal and peak metabolic rates (BMR, PMR), and respiratory quotients (RQ) of zebra finches (Taeniopygia guttata). Dietary exposure levels (0.0, 0.1, or 0.6 ppm wet weight) were intended to reflect a range of mercury concentrations found in invertebrate prey of songbirds in areas contaminated by atmospheric deposition or point-source pollution. We found adiposity increased with MeHg exposure. BMR also increased with exposure while PMR decreased, together resulting in reduced metabolic scope in both MeHg-exposed treatments. There were differences in RQ among treatments that suggested a compromised ability of exposed birds to rapidly metabolize carbohydrates during exercise in a hop-hover wheel. The elevated BMR of exposed birds may have been due to energetic costs of depurating MeHg, whereas the reduced PMR could have been due to reduced oxygen carrying capacity and/or reduced glycolytic capacity. Our results suggest that environmentally relevant mercury exposure is capable of compromising the ability of songbirds to both budget and rapidly exert energy.
اظهر المزيد [+] اقل [-]