خيارات البحث
النتائج 901 - 910 من 7,288
Pre-differentiation exposure of PFOA induced persistent changes in DNA methylation and mitochondrial morphology in human dopaminergic-like neurons النص الكامل
2022
Zhao, Han | Xie, Junkai | Wu, Shichen | Sánchez, Oscar F | Zhang, Xinle | Freeman, Jennifer L. | Yuan, Chongli
Perfluorooctanoic acid (PFOA) is abundant in environment due to its historical uses in consumer products and industrial applications. Exposure to low doses of PFOA has been associated with various disease risks, including neurological disorders. The underlying mechanism, however, remains poorly understood. In this study, we examined the effects of low dose PFOA exposure at 0.4 and 4 μg/L on the morphology, epigenome, mitochondrion, and neuronal markers of dopaminergic (DA)-like SH-SY5Y cells. We observed persistent decreases in H3K4me3, H3K27me3 and 5 mC markers in nucleus along with alterations in nuclear size and chromatin compaction percentage in DA-like neurons differentiated from SH-SY5Y cells exposed to 0.4 and 4 μg/L PFOA. Among the selected epigenetic features, DNA methylation pattern can be used to distinguish between PFOA-exposed and naïve populations, suggesting the involvement of epigenetic regulation. Moreover, DA-like neurons with pre-differentiation PFOA exposure exhibit altered network connectivity, mitochondrial volume, and TH expression, implying impairment in DA neuron functionality. Collectively, our results revealed the prolonged effects of developmental PFOA exposure on the fitness of DA-like neurons and identified epigenome and mitochondrion as potential targets for bearing long-lasting changes contributing to increased risks of neurological diseases later in life.
اظهر المزيد [+] اقل [-]Remediation technology towards zero plastic pollution: Recent advance and perspectives النص الكامل
2022
Ji, Jianghao | Zhao, Tong | Li, Fanghua
The rapid growth of plastic wastes exceeds efforts to eliminate plastic pollution owing to the outbreak of COVID-19 in 2020 and then aggravates inherent environmental threats to the ecosystem. The paper provided a short introduction relating to the hazards of plastic wastes on environment and a detailed statement about plastic toxicity on human. The article stated on plastic how to enter the body and cause harm for us step by step. Given the toxicity and harm of plastic wastes on human, the degradation of plastic wastes via the physical, chemical and biotic methodologies is looked back. The advanced physical techniques are introduced briefly at firstly. Additionally, evaluate on chemical method for plastic decomposition and review on biotic degradation of plastic. The reactive oxygen species and the enzymes play a crucial role in chemical and biotic degradation processes, respectively. The reactive oxygen species are derived from the activated state of oxides, and the enzymes that aid the microorganism to ingest plastic through its metabolic mechanism are secreted by the microorganism. Subsequently, the potential possibility of upcycling plastic is analyzed from two aspects of the technology and application. The innovative technology utilizes sunlight as driver-power of plastic upcycling. And the carbon capture, utilization and sequestration and the growth substrate provided the novel guided directions for plastic recycle. Lastly, the three suggestions on plastic waste management are expected to establish an economy and efficient plastic sorting system, and two engineering solutions on plastic recycle are to make a contribution for sustainable upcycling of plastic.
اظهر المزيد [+] اقل [-]Effect of apparent temperature on hospitalization from a spectrum of cardiovascular diseases in rural residents in Fujian, China النص الكامل
2022
Zhan, Zhi-Ying | Xue, Zhong | Yang, Jun | Ding, Zan | Xie, Xiao-Xu | Zheng, Zhen-Quan | Hu, Zhi-Jian
Cardiovascular disease (CVD) is a leading threat to global public health. Although associations between temperature and CVD hospitalization have been suggested for developed countries, limited evidence is available for developing countries or rural residents. Moreover, the effect of apparent temperature (AT) on the spectrum of cause-specific CVDs remains unknown. Based on 2,024,147 CVD hospitalizations for rural residents from eight regions in Fujian Province, China, during 2010–2016, a quasi-Poisson regression with distributed lag non-linear model was fitted to estimate the AT effect on daily CVD hospitalization for each region, and then pooled in a meta-regression that included regional indicators related to rural residents. Stratified analyses were performed according to the cause of hospitalization, sex and age groups. Finally, we calculated the fraction of CVD hospitalizations attributable to AT, as a reflection of the burden associated with AT. The heat effect appeared at lag 0–1 days, with 19% (95% CI, 11–26%) increased risk of CVD hospitalization, which was worse for ischemic heart disease, heart failure, arrhythmias and ischemic stroke. The decreased AT was associated with increase of hemorrhagic stroke at lag 0–28 days. People aged 65 and above suffered more from the heat effect on cardiovascular and cerebrovascular diseases. Regions with a lower gross value of agricultural production, rural residents’ per capita net income, number of air conditioners and water heaters were more susceptible. A large number of hospitalizations were attributable to heat for most subcategories. High AT level increased CVD hospitalization, and the subcategories had different susceptibilities. The effects were modified by individual and regional characteristics. These findings have important implications for the development of targeted interventions and for hospital service planning.
اظهر المزيد [+] اقل [-]Household herbicide use as a source of simazine contamination in urban surface waters النص الكامل
2022
Myers, Jackie H. | Rose, Gavin | Odell, Erica | Zhang, Pei | Bui, AnhDuyen | Pettigrove, Vincent
Contamination of urban surface waters by herbicides is an increasing concern; however, sources of contamination are poorly understood, hindering the development of mitigation and regulatory strategies. Impervious surfaces, such as concrete in driveways and paths are considered an important facilitator for herbicide runoff to urban surface waters following applications by residential homeowners. This study assessed the transferability of a herbicide from concrete pavers treated with an off-the-shelf product, containing simazine as the active herbicide, marketed for residential homeowner application to impervious surfaces. Commercially available pavers were treated according to label directions and the effects of exposure time prior to irrigation, repeated irrigations, and dry time between irrigations on transferability of simazine to runoff were assessed. Simazine transferability was greatest when receiving an initial irrigation 1 h after application, with concentrations in runoff reduced by half when exposure times prior to the first irrigation were >2 days. Concentrations remained stable for repeated irrigations up to 320 days and exposures to outdoor conditions of 180 days prior to a first irrigation. Dry time between irrigations significantly influenced simazine transfer to runoff. Dry periods of 140 days resulted in approximately a 4-times increase in simazine transferability to runoff. These results suggest that herbicides used by homeowners, or any other users, on impervious surfaces are available to contaminate runoff for prolonged time periods following application at concentrations that may pose risks to aquatic life and for reuse of harvested runoff on parks and gardens. Regulators should consider the potential of hard surfaces to act as reservoirs for herbicides when developing policies and labelling products.
اظهر المزيد [+] اقل [-]Plant nitrogen-use strategies and their responses to the urban elevation of atmospheric nitrogen deposition in southwestern China النص الكامل
2022
Hu, Chao-Chen | Liu, Xue-Yan
The elevation of nitrogen (N) deposition by urbanization profoundly impacts the structure and function of surrounding forest ecosystems. Plants are major biomass sinks of external N inputs into forests. Yet, the N-use strategies of forest plants in many areas remain unconstrained in city areas, so their responses and adapting mechanisms to the elevated N deposition are open questions. Here we investigated concentrations and N isotope (δ¹⁵N) of total N (TN) and nitrate (NO₃⁻) in leaves and roots of four plant species in subtropical shrubberies and pine forests under N deposition levels of 13 kg-N ha⁻¹ yr⁻¹ and 29 kg-N ha⁻¹ yr⁻¹ at the Guiyang area of southwestern China, respectively. The δ¹⁵N differences between plant NO₃⁻ and soil NO₃⁻ revealed a meager NO₃⁻ reduction in leaves but a preferentially high NO₃⁻ reduction in roots. δ¹⁵N mass-balance analyses between plant TN and soil dissolved N suggested that soil NO₃⁻ contributed more than reduced N, and dissolved organic N contributed comparably with ammonium to plant TN, and the study plants preferred NO₃⁻ over reduced N. The elevation of N deposition induced root but not leaf NO₃⁻ reduction and enhanced the contribution of soil NO₃⁻ to plant TN, but plant NO₃⁻ preference decreased due to much higher magnitudes of soil NO₃⁻ enrichment than plant NO₃⁻ utilization. We conclude that plants in subtropical forests of southwestern China preferred NO₃⁻ over reduced N, and NO₃⁻ was reduced more in roots than in leaves, anthropogenic N pollution enhanced soil NO₃⁻ enrichment and plant NO₃⁻ utilization but reduced plant NO₃⁻ preference.
اظهر المزيد [+] اقل [-]Molecularly imprinted polymers for sensing gaseous volatile organic compounds: opportunities and challenges النص الكامل
2022
Hua, Yongbiao | Ahmadi, Younes | Kim, Ki Hyun
Chemical sensors that can detect volatile organic compounds (VOCs) are the subject of extensive research efforts. Among various sensing technologies, molecularly imprinted polymers (MIPs) are regarded as a highly promising option for their detection with many advantageous properties, e.g., specific binding-site for template molecules, high recognition specificity, ease of preparation, and chemical stability. This review covers recent advances in the sensing application of MIPs toward various types of VOCs (e.g., aliphatic and aromatic compounds). Particular emphasis has been placed on multiple approaches to the synthesis of MIP-based VOC sensors in association with their performance and sensing mechanisms. Current challenges and opportunities for new VOC-sensing applications are also discussed based on MIP technology.
اظهر المزيد [+] اقل [-]The participation of nitric oxide in hydrogen sulphide-mediated chromium tolerance in pepper (Capsicum annuum L) plants by modulating subcellular distribution of chromium and the ascorbate-glutathione cycle النص الكامل
2022
Kaya, Cengiz | Ugurlar, Ferhat | Ashraf, Muhammed | El-Sheikh, Mohamed A. | Bajguz, Andrzej | Ahmad, Parvaiz
The promising response of chromium-stressed (Cr(VI)–S) plants to hydrogen sulphide (H₂S) has been observed, but the participation of nitric oxide (NO) synthesis in H₂S-induced Cr(VI)–S tolerance in plants remains to be elucidated. It was aimed to assess the participation of NO in H₂S-mediated Cr(VI)–S tolerance by modulating subcellular distribution of Cr and the ascorbate-glutathione (AsA-GSH) cycle in the pepper seedlings. Two weeks following germination, plants were exposed to control (no Cr) or Cr(VI)–S (50 μM K₂Cr₂O₇) for further two weeks. The Cr(VI)–S-plants grown in nutrient solution were supplied with 200 μM sodium hydrosulphide (NaHS, donor of H₂S), or NaHS plus 100 μM sodium nitroprusside (SNP, a donor of NO). Chromium stress suppressed plant growth and leaf water status, while elevated proline content, oxidative stress, and the activities of AsA-GSH related enzymes, as well as endogenous H₂S and NO contents. The supplementation of NaHS increased Cr accumulation at root cell walls and vacuoles of leaves as soluble fraction to reduce its toxicity. Furthermore it limited oxidative stress, improved plant growth, modulated leaf water status, and the AsA-GSH cycle-associated enzymes’ activities, as well as it further improved H₂S and NO contents. The positive effect of NaHS was found to be augmented on those parameters in the CrS-plants by the SNP supplementation. However, 0.1 mM cPTIO, the scavenger of NO, inverted the prominent effect of NaHS by decreasing NO content. The supplementation of SNP along with NaHS + cPTIO reinstalled the positive effect of NaHS by restoring NO content, which suggested that NO might have a potential role in H₂S-induced tolerance to Cr(VI)–S in pepper plants by stepping up the AsA-GSH cycle.
اظهر المزيد [+] اقل [-]Microbial community dynamics and their relationships with organic and metal pollutants of sugarcane molasses-based distillery wastewater sludge النص الكامل
2022
Tripathi, Sonam | Purchase, Diane | Al-Rashed, Sarah | Ram Chandra,
Distillery sludge is a major source of aquatic pollution, but little is known about their microbial community and their association with the organic and metal pollutants. Sugarcane molasses-based distillery is an important industry in India, although the waste is usually treated prior to disposal, the treatment is often inadequate. The adverse effects of the organic and metal pollutants in sugarcane molasses-based distillery sludge on the microbial biodiversity and abundance in the disposal site have not been elucidated. This study aims to address this gap of knowledge. Samples were collected from the discharge point, 1 and 2 km downstream (D1, D2, and D3, respectively) of a sugarcane distillery in Uttar Pradesh, India, and their physico-chemical properties characterised. Using QIIME, taxonomic assignment for the V3 and V4 hypervariable regions of 16 S rRNA was performed. The phyla Proteobacteria (28–39%), Firmicutes (20–28%), Bacteriodetes (9–10%), Actinobacteria (5–10%), Tenericutes (1–9%) and Patescibacteria (2%) were the predominant bacteria in all three sites. Euryechaeota, were detected in sites D1 and D2 (1–2%) but absent in D3. Spirochaetes (5%), Sinergistetes (2%) and Cloacimonetes (1%) were only detected in samples from site D1. Shannon, Simpson, Chao1, and Observed-species indices indicated that site D1 (10.18, 0.0013, 36706.55 and 45653.84, respectively) has higher bacterial diversity and richness than D2 (6.66, 0.0001, 25987.71 and 49655.89, respectively) and D3 (8.31, 0.002, 30345.53 and 30654.88, respectively), suggesting the organic and metal pollutants provided the stressors to favour the survival of microbial community that can biodegrade and detoxify them in the distillery sludge. This study confirmed that the treatment of the distillery waste was not sufficiently effective and provided new metagenomic information on its impact on the surrounding microbial community. It also offered new insights into potential bioremediation candidates.
اظهر المزيد [+] اقل [-]Exploring the impact of biochar supplement on the dynamics of antibiotic resistant fungi during pig manure composting النص الكامل
2022
Zhou, Yuwen | Zhang, Zengqiang | Awasthi, Mukesh Kumar
The purpose of this study was to investigate antibiotic resistant fungal (ARF) communities in pig manure (PM) composting employing two different biochar (coconut shell-CSB and bamboo biochar-BB) as amendment. Three treatments (Control, 10% CSB and 10% BB) were designed and indicated with T1 to T3. Experimental results declared that the fungal abundance significantly reduced among the both biochar applied treatments but three dominant phyla Ascomycota, Basidiomycota and Mucoromycota were still relatively greater abundance present. There were significant differences (p < 0.05) in the relative abundance and diversity of fungi among all three treatments. Interestingly, biochar addition regulated the overall fungal community in final compost. Compared with the control group, the abundance of fungi was positively mobilized, and especially CSB showed a better effect. Conclusively, biochar has potential to inhibit and reduce the ARGs population and mobility in compost. Thus, these findings offer new insight to understand the succession of ARFs during PM composting.
اظهر المزيد [+] اقل [-]Effect of polystyrene nanoplastics on cell apoptosis, glucose metabolism, and antibacterial immunity of Eriocheir sinensis النص الكامل
2022
Nan, Xingyu | Jin, Xingkun | Song, Yu | Zhou, Kaimin | Qin, Yukai | Wang, Qun | Li, Weiwei
The adverse effects of plastic waste and nanoplastics on the water environment have become a focus of global attention in recent years. In the present study, using adult Chinese mitten crabs (Eriocheir sinensis) as an animal model, the bioaccumulation and the in vivo and in vitro toxicity of polystyrene nanoplastics (PS NPs), alone or in combination with the bacteria, were investigated. This study aimed to investigate the effects of PS NPs on apoptosis and glucose metabolism in Chinese mitten crabs, and whether PS NPs could synergistically affect the antibacterial immunity of crabs. We observed that NPs were endocytosed by hemocytes, which are immune cells in crustaceans and are involved in innate immunity. The RNA sequencing data showed that after hemocytes endocytosed NPs, apoptosis and glucose metabolism-related gene expression was significantly induced, resulting in abnormal cell apoptosis and a glucose metabolism disorder. In addition, exposure to NPs resulted in changes in the antimicrobial immunity of crabs, including changes in antimicrobial peptide expression, survival, and bacterial clearance. In summary, NPs could be endocytosed by crab hemocytes, which adversely affected the cell apoptosis, glucose metabolism, and antibacterial immunity of Eriocheir sinensis. This study revealed the effects of NPs on crab immunity and lays the foundation for further exploration of the synergistic effect of NPs and bacteria.
اظهر المزيد [+] اقل [-]