خيارات البحث
النتائج 911 - 920 من 5,098
Ambient concentrations and deposition rates of selected reactive nitrogen species and their contribution to PM2.5 aerosols at three locations with contrasting land use in southwest China
2018
Song, Ling | Liu, Xuejun | Skiba, Ute | Zhu, Bo | Zhang, Xifeng | Liu, Meiyu | Twigg, Marsailidh | Shen, Jianlin | Dore, Anthony | Reis, Stefan | Coyle, Mhairi | Zhang, Wen | Levy, Peter | Fowler, David
The fast economic development of southwest China has resulted in significant increases in the concentrations of reactive nitrogen (Nr) in the atmosphere. In this study, an urban (Chengdu, CD), suburban (Shifang, SF) and agriculture (Yanting, YT) – dominated location in the Sichuan Province, southwest China, were selected to investigate the atmospheric composition of Nr, their concentrations and deposition rates. We measured Nr concentrations in precipitation (NH₄⁺, NO₃⁻ and organic N (DON)), the gas phase (NH₃ and NO₂), and the aerosol particles (PM₂.₅), and calculated their fluxes over a two year period (2014–2016). Total annual N deposition rates were 49.2, 44.7 and 19.8 kg N ha⁻¹ yr⁻¹ at CD, SF and YT, respectively. Ammonia concentrations were larger at the urban and suburban sites than the agricultural site (12.2, 14.9, and 4.9 μg N m⁻³ at CD, SF and YT, respectively). This is consistent with the multitude of larger sources of NH₃, including city garbage, livestock and traffic, in the urban and suburban areas. Monthly NO₂ concentrations were lower in warmer compared to the colder months, but seasonal differences were insignificant. Daily PM₂.₅ concentrations ranged from 7.7 to 236.0, 5.0–210.4 and 4.2–128.4 μg m⁻³ at CD, SF and YT, respectively, and showed significant correlations with fine particulate NH₄⁺ and NO₃⁻ concentrations. Ratios of reduced to oxidized N were in the range of 1.6–2.7. This implies that the control of reduced Nr especially in urban environments is needed to improve local air quality.
اظهر المزيد [+] اقل [-]Concentration of uranium in the soils of the west of Spain
2018
Santos-Francés, Fernando | Gil Pacheco, Elena | Martínez-Graña, Antonio | Alonso Rojo, Pilar | Ávila Zarza, Carmelo | García Sánchez, Antonio
While determining the uranium concentration in the rock (background level) and soils on the Iberian Massif of western Spain, several geochemical anomalies were observed. The uranium concentration was much higher than the geochemical levels at these locations, and several uranium minerals were detected. The proposed uranium background levels for natural soils in the west of Salamanca Province (Spain) are 29.8 mg kg−1 in granitic rock and 71.2 mg kg−1 in slate. However, the soil near the tailings of abandoned mines exhibited much higher concentrations, between 207.2 and 542.4 mg kg−1.The calculation of different pollution indexes (Pollution Factor and Geo-accumulation Index), which reveal the conditions in the superficial horizons of the natural soils, indicated that a good percentage of the studied samples (16.7–56.5%) are moderately contaminated. The spatial distribution of the uranium content in natural soils was analysed by applying the inverse distance weighted method.The distribution of uranium through the horizons of the soils shows a tendency to accumulate in the horizons with the highest clay content. The leaching of uranium from the upper horizons and accumulation in the lower horizons of the soil could be considered a process for natural attenuation of the surface impacts of this radiogenic element in the environment. Environmental restoration is proposed in the areas close to the abandoned mining facilities of this region, given the high concentration of uranium. First, all the tailings and other mining waste would be covered with a layer of impermeable material to prevent leaching by runoff. Then, a layer of topsoil with organic amendments would be added, followed by revegetation with herbaceous plants to prevent surface erosion.
اظهر المزيد [+] اقل [-]Field biomonitoring using the zebra mussel Dreissena polymorpha and the quagga mussel Dreissena bugensis following immunotoxic reponses. Is there a need to separate the two species?
2018
Evariste, Lauris | David, Elise | Cloutier, Pierre-Luc | Brousseau, P. (Pauline) | Auffret, Michel | Desrosiers, Mélanie | Groleau, Paule Emilie | Fournier, Michel | Betoulle, Stéphane
The zebra mussel, Dreissena polymorpha constitutes an extensively used sentinel species for biomonitoring in European and North American freshwater systems. However, this invasive species is gradually replaced in freshwater ecosystem by Dreissena bugensis, a closely related dreissenid species that shares common morphological characteristics but possess some physiological differences. However, few are known about differences on more integrated physiological processes that are generally used as biomarkers in biological monitoring studies. Declining of zebra mussel populations raises the question of the sustainability of using one or both species indifferently to maintain the quality of environmental pollution monitoring data. In our study, we performed a field comparative study measuring immune-related markers and bioaccumulation of PCBs, PAHs and PBDEs in sympatrically occurring mussel populations from three sites of the St. Lawrence River. For tested organisms, species were identified using RFLP analysis. Measurement of bioaccumulated organic compounds indicated a higher accumulation of PCBs and PBDEs in D. bugensis soft tissues compared to D. polymorpha while no differences were noticed for PAHs. Results of hemocytic parameters highlighted that differences of hemocyte distributions were associated to modulations of phagocytic activities. Moreover, marked differences occurred in measurement of hemocytic oxidative activity, indicating divergences between the two species for ROS regulation strategies. This physiological characteristic may deeply influence species responses facing environmental or pollution related stress and induce bias if the two species are not differentiated in further biomarker or bioaccumulation measurement-based studies.
اظهر المزيد [+] اقل [-]Mitochondrial dysfunction, perturbations of mitochondrial dynamics and biogenesis involved in endothelial injury induced by silica nanoparticles
2018
Guo, Caixia | Wang, Ji | Jing, Li | Ma, Ru | Liu, Xiaoying | Gao, Lifang | Cao, Lige | Duan, Junchao | Zhou, Xianqing | Li, Yanbo | Sun, Zhiwei
As silica nanoparticles (SiNPs) pervade the global economy, however, the followed emissions during the manufacturing, use, and disposal stages inevitably bring an environmental release, potentially result in harmful impacts. Endothelial dysfunction precedes cardiovascular disease, and is often accompanied by mitochondrial impairment and dysfunction. We had reported endothelial dysfunction induced by SiNPs, however, the related mechanisms by which SiNPs interact with mitochondria are not well understood. In the present study, we examined SiNPs-induced mitochondrial dysfunction, and further demonstrated their adverse effects on mitochondrial dynamics and biogenesis in endothelial cells (HUVECs). Consequently, SiNPs entered mitochondria, caused mitochondrial swelling, cristae disruption and even disappearance. Further analyses revealed SiNPs increased the intracellular level of mitochondrial reactive oxygen species, eventually resulting in the collapse of mitochondrial membrane potential, impairments in ATP synthesis, cellular respiration and the activities of three ATP-dependent enzymes (including Na+/K+-ATPase, Ca2+-ATPase and Ca2+/Mg2+-ATPase), as well as an elevated intracellular calcium level. Furthermore, mitochondria in SiNPs-treated HUVECs displayed a fission phenotype. Accordingly, dysregulation of the key gene expressions (FIS1, DRP1, OPA1, Mfn1 and Mfn2) involved in fission/fusion event further certified the SiNPs-induced perturbation of mitochondrial dynamics. Meanwhile, SiNPs-treated HUVECs displayed declined levels of mitochondrial DNA copy number, PGC-1α, NRF1 and also TFAM, indicating an inhibition of mitochondrial biogenesis triggered by SiNPs via PGC-1α-NRF1-TFAM signaling. Overall, SiNPs triggered endothelial toxicity through mitochondria as target, including the induction of mitochondrial dysfunction, as well as the perturbations of their dynamics and biogenesis.
اظهر المزيد [+] اقل [-]Rainfall effects on the erodibility of sediment and microphytobenthos in the intertidal flat
2018
Ha, Hun Jun | Kim, Hosang | Noh, Junsung | Ha, Ho Kyung | Khim, Jong Seong
The frequent rainfall during the low tide would erode and transport the surface sediment and microphytobenthos (MPB) in the intertidal flat. In order to quantify the rainfall effects on the erodibility of sediment and MPB at the salt marsh and mixed flat, a series of erosion experiments have been conducted with a Gust erosion microcosm system. Surface sediments were sampled for analyzing algal biomass (Chl-a) and primary production (PP) during three typical weather (without rain, rain, and post-rain) conditions. The results of erosion experiment, in both salt marsh and mixed flat, showed that the sediment erodibility under rain condition was higher than that under without rain condition, with increased total eroded mass by 37–86%. It indicated that the rainfall effects caused to significantly disturb the surface sediment. After the rainfall events, the removal of highly-erodible sediments resulted in the reduction in eroded mass. The MPB erodibility under rain condition was lower than that under without rain condition, with decreased total eroded Chl-a by 29%. At the mixed flat, the rainfall effects caused to significantly decrease biological activities of MPB (biomass and PP) associated with surface sediment. The surface Chl-a concentration under post-rain condition decreased by 73%, compared to that under rain condition. At the salt marsh, in contrast, the rainfall effects were barely shown when the biological activities of MPB were rather stable. This implied that the eroded MPB induced by rainfall was retained within the marsh system due to vegetation canopy.
اظهر المزيد [+] اقل [-]Rationally designed core-shell and yolk-shell magnetic titanate nanosheets for efficient U(VI) adsorption performance
2018
Yinling, | Song, Shuang | Wang, Xiangxue | Niu, Fenglei | Ma, Ran | Yu, Shujun | Wen, Tao | Chen, Yuantao | Hayat, Tasawar | Alsaedi, Ahmed | Wang, Xiangke
The hierarchical core-shell and yolk-shell magnetic titanate nanosheets (Fe3O4@TNS) were successfully synthesized by employing magnetic nanoparticles (NPs) as interior core and intercrossed titanate nanostructures (NSs) as exterior shell. The as-prepared magnetic Fe3O4@TNS nanosheets had high specific areas (114.9 m2 g−1 for core-shell Fe3O4@TNS and 130.1 m2 g−1 for yolk-shell Fe3O4@TNS). Taking advantage of the unique multilayer structure, the nanosheets were suitable for eliminating U(VI) from polluted water environment. The sorption was strongly affected by pH values and weakly influenced by ionic strength, suggesting that the sorption of U(VI) on Fe3O4@TNS was mainly dominated by ion exchange and outer-sphere surface complexion. The maximum sorption capacities (Qmax) calculated from the Langmuir model were 68.59, 121.36 and 264.55 mg g−1 for core-shell Fe3O4@TNS and 82.85, 173.01 and 283.29 mg g−1 for yolk-shell Fe3O4@TNS, at 298 K, 313 K and 328 K, respectively. Thermodynamic parameters (ΔH0, ΔS0 and ΔG0) demonstrated that the sorption process was endothermic and spontaneous. Based on X-ray photoelectron spectroscopy (XPS) analyses, the sorption mechanism was confirmed to be cation-exchange between interlayered Na+ and UO22+. The yolk-shell Fe3O4@TNS had more extraordinary sorption efficiency than core-shell Fe3O4@TNS since the yolk-shell structure provided internal void space inside the titanate shell to accommodate more exchangeable active sites. The flexible recollection and high efficient sorption capacity made core-shell and yolk-shell Fe3O4@TNS nanosheets promising materials to eliminate U(VI) or other actinides in wastewater cleanup applications.
اظهر المزيد [+] اقل [-]Mercury exposure and short-term consequences on physiology and reproduction in Antarctic petrels
2018
Carravieri, Alice | Fort, Jérôme | Tarroux, Arnaud | Cherel, Yves | Love, Oliver P. | Prieur, Solène | Brault-Favrou, Maud | Bustamante, Paco | Descamps, Sébastien
Mercury (Hg) is a pervasive contaminant reaching Antarctic environments through atmospheric transport and deposition. Seabirds as meso to top predators can accumulate high quantities of Hg through diet. Reproduction is one of the most sensitive endpoints of Hg toxicity in marine birds. Yet, few studies have explored Hg exposure and effects in Antarctic seabirds, where increasing environmental perturbations challenge animal populations. This study focuses on the Antarctic petrel Thalassoica antarctica from Svarthamaren, Antarctica, where the world's largest breeding population is thought to be in decline. Hg and the stable isotopes of carbon (δ13C, proxy of feeding habitat) and nitrogen (δ15N, trophic position/diet) were measured in red blood cells from 266 individuals over two breeding years (2012–13, 2013–14). Our aims were to 1) quantify the influence of individual traits (size and sex) and feeding ecology (foraging location, δ13C and δ15N values) on Hg exposure, and 2) test the relationship between Hg concentrations with body condition and breeding output (hatching success and chick survival). Hg concentrations in Antarctic petrels (mean ± SD, 0.84 ± 0.25, min-max, 0.42–2.71 μg g−1 dw) were relatively low when compared to other Antarctic seabirds. Hg concentrations increased significantly with δ15N values, indicating that individuals with a higher trophic level (i.e. feeding more on fish) had higher Hg exposure. By contrast, Hg exposure was not driven by feeding habitat (inferred from both foraging location and δ13C values), suggesting that Hg transfer to predators in Antarctic waters is relatively homogeneous over a large geographical scale. Hg concentrations were not related to body condition, hatching date and short-term breeding output. At present, Hg exposure is likely not of concern for this population. Nevertheless, further studies on other fitness parameters and long-term breeding output are warranted because Hg can have long-term population-level effects without consequences on current breeding success.
اظهر المزيد [+] اقل [-]Physiological responses of date palm (Phoenix dactylifera) seedlings to acute ozone exposure at high temperature
2018
Du, Baoguo | Kreuzwieser, Jürgen | Winkler, Jana Barbro | Ghirardo, Andrea | Schnitzler, Jörg-Peter | Ache, Peter | Alfarraj, Saleh | Hedrich, Rainer | White, Philip | Rennenberg, H. (Heinz)
Vegetation in the Arabian Peninsula is facing high and steadily rising tropospheric ozone pollution. However, little is known about the impacts of elevated ozone on date palms, one of the most important indigenous economic species. To elucidate the physiological responses of date palm to peak levels of acute ozone exposure, seedlings were fumigated with 200 ppb ozone for 8 h. Net CO₂ assimilation rate, stomatal conduction, total carbon, its isotope signature and total sugar contents in leaves and roots were not significantly affected by the treatment and visible symptoms of foliar damage were not induced. Ozone exposure did not affect hydrogen peroxide and thiol contents but diminished the activities of glutathione reductase and dehydroascorbate reductase, stimulated the oxidation of ascorbate, and resulted in elevated total ascorbate contents. Total nitrogen, soluble protein and lignin contents remained unchanged upon ozone exposure, but the abundance of low molecular weight nitrogen (LMWN) compounds such as amino acids and nitrate as well as other anions were strongly diminished in leaves and roots. Other nitrogen pools did not benefit from the decline of LMWN, indicating reduced uptake and/or enhanced release of these compounds into the soil as a systemic response to aboveground ozone exposure. Several phenolic compounds, concurrent with fatty acids and stearyl alcohol, accumulated in leaves, but declined in roots, whereas total phenol contents significantly increased in the roots. Together these results indicate that local and systemic changes in both, primary and secondary metabolism contribute to the high tolerance of date palms to short-term acute ozone exposure.
اظهر المزيد [+] اقل [-]Air quality impacted by local pollution sources and beyond – Using a prominent petro-industrial complex as a study case
2018
Chen, Sheng-Po | Wang, Chieh-Heng | Lin, Wen-Dian | Tong, Yu-Huei | Chen, Yu-Chun | Chiu, Ching-Jui | Jiang, Hongji | Fan, Chen-Lun | Wang, Jia-Lin | Chang, Julius S.
The present study combines high-resolution measurements at various distances from a world-class gigantic petrochemical complex with model simulations to test a method to assess industrial emissions and their effect on local air quality.Due to the complexity in wind conditions which were highly seasonal, the dominant wind flow patterns in the coastal region of interest were classified into three types, namely northeast monsoonal (NEM) flows, southwest monsoonal (SEM) flows and local circulation (LC) based on six years of monitoring data. Sulfur dioxide (SO2) was chosen as an indicative pollutant for prominent industrial emissions. A high-density monitoring network of 12 air-quality stations distributed within a 20-km radius surrounding the petrochemical complex provided hourly measurements of SO2 and wind parameters. The SO2 emissions from major industrial sources registered by the monitoring network were then used to validate model simulations and to illustrate the transport of the SO2 plumes under the three typical wind patterns. It was found that the coupling of observations and modeling was able to successfully explain the transport of the industrial plumes. Although the petrochemical complex was seemingly the only major source to affect local air quality, multiple prominent sources from afar also played a significant role in local air quality. As a result, we found that a more complete and balanced assessment of the local air quality can be achieved only after taking into account the wind characteristics and emission factors of a much larger spatial scale than the initial (20 km by 20 km) study domain.
اظهر المزيد [+] اقل [-]An overview of hexabromocyclododecane (HBCDs) in environmental media with focus on their potential risk and management in China
2018
Cao, Xianghui | Lü, Yonglong | Zhang, Yueqing | Kifāyatullāh, K̲h̲ān | Wang, Chenchen | Baninla, Yvette
Hexabromocyclododecanes (HBCDs) are the subject of recent interest and potential risk assessment particularly in China due to its ubiquitous existence in a variety of environmental media. This paper reviews the recent studies conducted on HBCDs in different environmental media (air, soil, water, river sediment, sewage sludge, biota and daily food) in China. At the same time, human health risks via food and occupational exposure of HBCDs in production plants, expanded polystyrene (EPS) and extruded polystyrene (XPS) plants were assessed. The review reveals that HBCDs levels of air, soil, sediment, sewage sludge, biota and food presented a geographical variation in the eastern coastal regions of China. There were many factors resulting in the variation, such as sampling sites, climate and analytical method. In terms of diastereoisomer, α-HBCD and γ-HBCD were the predominant diastereoisomers in air, soil, sediment, and sewage sludge. In the water, α-HBCD and γ-HBCD shared the major proportion to the total HBCDs. However, only α-HBCD was the predominant diastereoisomer in biota. With regard to human exposure pathway to HBCDs, food was the major route for human exposure to HBCDs, especially meat. In addition, soil and road dust were also important exposure pathways. Furthermore, workers and residents, especially infants in and around waste dumping sites and industrial areas are exposed to the highest HBCDs levels among all the populations studied thus far. HBCDs posed a potential threat to the environment and human health. Therefore, risk assessment and management have an important role to play in preventing and mitigating HBCDs risks.
اظهر المزيد [+] اقل [-]