خيارات البحث
النتائج 911 - 920 من 4,938
Autophagy protects murine macrophages from β-cypermethrin-induced mitochondrial dysfunction and cytotoxicity via the reduction of oxidation stress النص الكامل
2019
He, Bingnan | Wang, Xia | Zhu, Jianbo | Kong, Baida | Wei, Lai | Jin, Yuanxiang | Fu, Zhengwei
The immunotoxicity of synthetic pyrethroid (SPs) has garnered much attention, and our previous research demonstrated that β-CYP causes immunotoxicity and oxidative stress in macrophages. Nevertheless, the underlying mechanism remains largely unknown. In this study, the murine macrophage RAW 264.7 cells and murine peritoneal macrophages (PMs) were exposed to β-CYP. The results showed that β-CYP elevated intracellular ROS levels in both RAW 264.7 cells and PMs. Exposure to β-CYP also caused mitochondrial dysfunction with reduced mitochondrial membrane potential (MMP), intracellular ATP level and mitochondrial DNA (mtDNA) content in the two cell types. In addition, exposure of RAW 264.7 cells to β-CYP for 12 h and 24 h enhanced autophagy, with elevated Beclin1, Rab7, Lamp1 and LC3-II expression levels, while 48 h of exposure attenuated autophagy. In contrast, exposure of PMs to β-CYP for 12 h promoted autophagy, whereas exposure for 24 h and 48 h impaired autophagy. Cotreatment with an antioxidant, N-acetyl-L-cysteine (NAC), partially blocked the reduced MMP, intracellular ATP level and autophagy disturbance. Moreover, cotreatment with an autophagy agonist, rapamycin (RAPA), partially blocked mitochondrial dysfunction and oxidative stress in the two cell types, whereas cotreatment with an autophagy inhibitor, 3-methyladenine (3-MA), augmented the abovementioned toxic effects. Furthermore, mitochondrial ROS levels in both RAW 264.7 cells and PMs were elevated by exposure to β-CYP, and molecular docking showed that β-CYP docked with mouse respiratory chain complex I by binding to the ND2, ND4, and ND5 subunits of the protein complex. Taken together, the data obtained in the present study demonstrate that oxidative stress partially mediates mitochondrial dysfunction and autophagy disturbance upon exposure to β-CYP in macrophages, and autophagy plays a protective role against the toxic effects.
اظهر المزيد [+] اقل [-]Effect of sodium concentration on mobilization and fate of trace metals in standard OECD soil النص الكامل
2019
Pontoni, Ludovico | Race, Marco | van Hullebusch, Eric D. | Fabbricino, Massimiliano | Esposito, Giovanni | Pirozzi, Francesco
The effect of different Na concentrations on the fate of trace metals (Cd, Cu, Ni, Zn) in standard OECD soil was evaluated by performing soil leaching column experiments. Five Na concentrations added in synthetic irrigation water (0, 1, 5, 10, 50 mM) were studied in order to evaluate the fate of the metals contained in both the irrigation water leachate and the soil layer. In all experiments, metals mostly accumulated on the top soil layer (0–0.5 cm), at variable concentrations according to the Na content in the artificial irrigation water. Nevertheless, concentration peaks of metal contamination occurred at different sampling time in the soil leachates depending on the metal and on influent water sodicity. Peaks of metals in the leachate appeared simultaneously with the release of organic matter and/or release of Al, suggesting significant involvement of colloids in metals transport. Sodium concentration (10–50 mM) was demonstrated to highly reduce colloidal mobilization leading to the accumulation of more than 95% of the influent metal in the top soil layer. Conversely, low Na concentrations (1–5 mM) favored colloidal transport leading to the recovery of metals in the soil leachates.
اظهر المزيد [+] اقل [-]Transport and retention of engineered silver nanoparticles in carbonate-rich sediments in the presence and absence of soil organic matter النص الكامل
2019
Adrian, Yorck F. | Schneidewind, Uwe | Bradford, Scott A. | Šimůnek, Jirka | Klumpp, Erwin | Azzam, R. (Rafig)
The transport and retention behavior of polymer- (PVP-AgNP) and surfactant-stabilized (AgPURE) silver nanoparticles in carbonate-dominated saturated and unconsolidated porous media was studied at the laboratory scale. Initial column experiments were conducted to investigate the influence of chemical heterogeneity (CH) and nano-scale surface roughness (NR) arising from mixtures of clean, positively charged calcium carbonate sand (CCS), and negatively charged quartz sands. Additional column experiments were performed to elucidate the impact of CH and NR arising from the presence and absence of soil organic matter (SOM) on a natural carbonate-dominated aquifer material. The role of the nanoparticle capping agent was examined under all conditions tested in the column experiments. Nanoparticle transport was well described using a numerical model that facilitated blocking on one or two retention sites. Results demonstrate that an increase in CCS content in the artificially mixed porous medium leads to delayed breakthrough of the AgNPs, although AgPURE was much less affected by the CCS content than PVP-AgNPs. Interestingly, only a small portion of the solid surface area contributed to AgNP retention, even on positively charged CCS, due to the presence of NR which weakened the adhesive interaction. The presence of SOM enhanced the retention of AgPURE on the natural carbonate-dominated aquifer material, which can be a result of hydrophobic or hydrophilic interactions or due to cation bridging. Surprisingly, SOM had no significant impact on PVP-AgNP retention, which suggests that a reduction in electrostatic repulsion due to the presence of SOM outweighs the relative importance of other binding mechanisms. Our findings are important for future studies related to AgNP transport in shallow unconsolidated calcareous and siliceous carbonate sands.
اظهر المزيد [+] اقل [-]Environmental risk assessment of propranolol in the groundwater bodies of Europe النص الكامل
2019
Di Lorenzo, Tiziana | Di Cicco, Mattia | Di Censo, Davide | Galante, Angelo | Boscaro, Francesca | Messana, Giuseppe | Paola Galassi, Diana Maria
A growing concern for contamination due to pharmaceutical compounds in groundwater is expanding globally.The β-blocker propranolol is a β-adrenoceptors antagonist commonly detected in European groundwater bodies. The effect of propranolol on stygobiotic species (obligate groundwater dweller species) is compelling in the framework of environmental risk assessment (ERA) of groundwater ecosystems. In fact, in Europe, ERA procedures for pharmaceuticals in groundwater are based on data obtained with surrogate surface water species. The use of surrogates has aroused some concern in the scientific arena since the first ERA guideline for groundwater was issued. We performed an ecotoxicological and a behavioural experiment with the stygobiotic crustacean species Diacyclops belgicus (Copepopda) to estimate a realistic value of the Predicted No Effect Concentration (PNEC) of propranolol for groundwater ecosystems and we compared this value with the PNEC estimated based on EU ERA procedures. The results of this study showed that i) presently, propranolol does not pose a risk to groundwater bodies in Europe at the concentrations shown in this study and ii) the PNEC of propranolol estimated through the EU ERA procedures is very conservative and allows to adequately protect these delicate ecosystems and their dwelling fauna. The methodological approach and the results of this study represent a first contribution to the improvement of ERA of groundwater ecosystems.
اظهر المزيد [+] اقل [-]Insights into the uptake, elimination and accumulation of microplastics in mussel النص الكامل
2019
Fernández, Beatriz | Albentosa, Marina
The majority of plastics present in the marine environment are microplastics (MPs, <5 mm). Suspension filter feeders are susceptible species to MPs ingestion. Once ingested MPs can be eliminated packed in fecal pellets, or they can be accumulated within tissues, and likely be transferred along the food web. The research on MPs is hampered by the difficulty on their quantification and the lack of standardized methodologies. Indeed, limited information exits about the capacity of marine organisms to ingest, accumulate and eliminate MPs. In this work we investigated the uptake, elimination and accumulation of MPs (irregularly shaped particles of high density polyethylene, ≤22 μm) in mussel. Mussels were exposed to two concentrations of MPs (2 and 4 mm3 l−1), and their uptake, elimination and accumulation in digestive gland was investigated. The results showed that the uptake of MPs increased at the high concentration tested, and that mussels cleared MPs at the same extent than a food item (microalgae) of similar size. Small MPs (2–4 μm) were less efficiently cleared than the larger ones. Large MPs (>10 μm) were faster eliminated than the smaller ones. The global balance showed that after 6 days of depuration mussels eliminated ≈85% of the MPs cleared, and that ≈2–6% of the MPs cleared remained in the digestive gland, essentially those <6 μm. We recorded a long retention time for MPs, contrasting with the lower times assumed to be necessary to empty mussel's gut before quantifying MPs. Our study emphasized the gap of knowledge on the feeding behaviour of mussels in relation to MPs, and the necessity to investigate it in different marine species, and under different exposure scenarios.
اظهر المزيد [+] اقل [-]Chemical characteristics of airborne particles in Xi'an, inland China during dust storm episodes: Implications for heterogeneous formation of ammonium nitrate and enhancement of N-deposition النص الكامل
2019
Wu, Can | Wang, Gehui | Cao, Cong | Li, Jianjun | Li, Jin | Wu, Feng | Huang, Rujin | Cao, Junji | Han, Yongmin | Ge, Shuangshuang | Xie, Yuning | Xue, Guoyan | Wang, Xinpei
To identify the sources and heterogeneous reactions of sulfate and nitrate with dust in the atmosphere, airborne particles in Xi'an, inland China during the spring of 2017 were collected and measured for chemical compositions, along with a laboratory simulation of the heterogeneous formation of ammonium nitrate on the dust surface. Our results showed that concentrations of Ca²⁺, Na⁺ and Cl⁻ in the TSP samples were enhanced in the dust events, with the values of 41.8, 5.4 and 4.0 μg m⁻³, respectively, while NO₃⁻ (7.1 μg m⁻³) and NH₄⁺ (2.4 μg m⁻³) remarkably decreased, compared to those in the non-dust periods. During the dust events, NH₄⁺ correlated only with NO₃⁻ (R² = 0.52) and abundantly occurred in the coarse mode (>2.1 μm), in contrast to that in the non-dust periods, which well correlated with sulfate and nitrate and enriched in the fine mode (<2.1 μm). SO₄²⁻ in Xi'an during the dust events existed mostly as gypsum (CaSO₄·2H₂O) and mirabilite (Na₂SO₄·10H₂O) and dominated in the coarse mode, suggesting that they were directly transported from the upwind Gobi Desert region. Our laboratory simulation results showed that during the long-range transport hygroscopic salts in the Gobi dust such as mirabilite can absorb water vapor and form a liquid phase on the particle surface, then gaseous NH₃ and HNO₃ partition into the aqueous phase and form NH₄NO₃, resulting in the strong correlation of NH₄⁺ with NO₃⁻ and their accumulation on dust particles. The dry deposition flux of total inorganic nitrogen (NH₄⁺ + NO₃⁻) in Xi'an during the dust events was 0.97 mg-N m⁻² d⁻¹ and 37% higher than that in the non-dust periods. Such a significant enhanced N-deposition is ascribed to the heterogeneous formation of NH₄NO₃ on the dust particle surface, which has been ignored and should be included in future model simulations.
اظهر المزيد [+] اقل [-]Repeated detection of polystyrene microbeads in the Lower Rhine River النص الكامل
2019
Mani, Thomas | Blarer, Pascal | Storck, Florian R. | Pittroff, Marco | Wernicke, Theo | Burkhardt-Holm, Patricia
Microplastics are emerging pollutants in water bodies worldwide. The environmental entry areas must be studied to localise their sources and develop preventative and remedial solutions. Rivers are major contributors to the marine microplastics load. Here, we focus on a specific type of plastic microbead (diameter 286–954 μm, predominantly opaque, white–beige) that was repeatedly identified in substantial numbers between kilometres 677 and 944 of the Rhine River, one of Europe's main waterways. Specifically, we aimed (i) to confirm the reported abrupt increase in microbead concentrations between the cities of Leverkusen and Duisburg and (ii) to assess the concentration gradient of these particles along this stretch at higher resolution. Furthermore, we set out (iii) to narrow down the putative entry stretch from 81.3 km, as reported in an earlier study, to less than 20 km according to our research design, and (iv) to identify the chemical composition of the particles and possibly reveal their original purpose. Surface water filtration (mesh: 300 μm, n = 9) at regular intervals along the focal river stretch indicated the concentration of these spherules increased from 0.05 to 8.3 particles m−3 over 20 km. This spot sampling approach was supported by nine suspended solid samples taken between 2014 and 2017, encompassing the river stretch between Leverkusen and Duisburg. Ninety-five percent of microbeads analysed (202/212) were chemically identified as crosslinked polystyrene-divinylbenzene (PS-DVB, 146/212) or polystyrene (PS, 56/212) via Raman or Fourier-transform infrared spectroscopy. Based on interpretation of polymer composition, surface structure, shape, size and colour, the PS(-DVB) microbeads are likely to be used ion-exchange resins, which are commonly applied in water softening and various industrial purification processes. The reported beads contribute considerably to the surface microplastic load of the Rhine River and their potential riverine entry area was geographically narrowed down.
اظهر المزيد [+] اقل [-]Spatial distribution of lead contamination in soil and equipment dust at children's playgrounds in Beijing, China النص الكامل
2019
Peng, Tianyue | O'Connor, David | Zhao, Bin | Jin, Yuanliang | Zhang, Yunhui | Tian, Li | Zheng, Na | Li, Xiaoping | Hou, Deyi
Lead contamination is widespread across China, posing a serious public health concern. In quantifying child lead exposure, established health risk assessment (HRA) approaches often take into account residential soil lead levels. However, this may not constitute a significant exposure source for children in urban mainland China, where the population mainly dwell in high-rise buildings without back or front yards. In this setting, children's playgrounds may represent a more probable exposure source. The present study analyzed lead levels in settled dust on playground equipment and in surficial soils at 71 playgrounds in Beijing, China. Our results reveal that the average playground dust lead concentration was 80.5 mg/kg, more than twice the average soil lead concentration of 36.2 mg/kg. It was found that there are differences in statistical and spatial distributions for lead in playground dust and soils. Lead levels in equipment dust were largely consistent across Beijing, with elevated levels detected at locations in the main city area, the newly developed Tongzhou District, and the rural counties. Whereas average soil lead concentrations were higher at playgrounds in the main city area than other areas of Beijing. Statistical analysis suggests that the lead content in dust and soil may derive from different natural and anthropogenic sources. Equipment dust lead may be associated with long-distance atmospheric transportation and deposition. Whereas lead in soil is more likely to be associated with local traffic. This study also found that, in certain areas of Beijing, the risk of blood lead levels (BLLs) exceeding safe levels was up to 6 times higher when based on dust exposure than when based on playground soil exposure. The results of this study suggests that HRA undertaken for children in urban mainland China should pay closer attention to children's playgrounds as a lead exposure source, and, in particular, playground equipment dust.
اظهر المزيد [+] اقل [-]Potential of biochar filters for onsite wastewater treatment: Effects of active and inactive biofilms on adsorption of per- and polyfluoroalkyl substances in laboratory column experiments النص الكامل
2019
Dalahmeh, Sahar S | Alziq, Nancy | Ahrens, Lutz
This study investigated the potential of biochar filters as a replacement for, or complement to, sand filters for removal of per- and polyfluoroalkyl substances (PFASs) from wastewater in on-site wastewater treatment systems (OWTSs). Concentrations and removal of nine perfluoroalkyl carboxylates (PFCAs; C₃₋₁₁) and three perfluoroalkane sulfonates (PFSAs; C₄, ₆, ₈) and one perfluorooctanesulfonamide (FOSA; C₈) were investigated over 22 weeks in four treatments with column filters: biochar (BC) without biofilm (BC-no-biofilm), biochar with active biofilm (BC-active-biofilm), biochar with inactive biofilm (BC-inactive-biofilm) and sand with active biofilm (Sand-active-biofilm). The filters were operated under hydraulic loading (50 L m⁻² day⁻¹) to mimic the loading rate in on-site filtration beds. The initial concentrations of the ΣPFASs in the influent were in the range of 1500–4900 ng L⁻¹. In BC-no-biofilm, the removal efficiency (20–60%) and adsorption capacity (0–88 ng ΣPFASs g⁻¹ BC) of short-chain PFCAs (C₃₋₆) and PFSA (C₄) was low, whereas the removal efficiency (90–99%) and the adsorption capacity (73–168 ng g⁻¹) was high for C₇-C₁₁ PFCAs, C₆, C₈ PFSAs and FOSA. The relative removal was generally lower for C₃₋₉ PFCAs and C₄, C₆, C₈ PFSAs using BC-active-biofilm and BC-inactive-biofilm compared with BC-no-biofilm. This can be explained by the presence of biofilm and solids in BC-active-biofilm and the presence of wastewater solids in BC-inactive-biofilm, which decreased the availability and number of adsorption sites for PFASs compared with BC-no-biofilm. On the other hand, inactivation of the biofilm resulted in lower removal efficiencies for C₅₋₁₁ PFCAs, C₄, C₆, C₈ PFSAs and FOSA, probably because the biofilm degraded organic matter and thus increased the availability and number of adsorption sites compared with BC-inactive-biofilm. Sand-active-biofilm showed poor removal (0–70%) for all PFASs except FOSA (90%) and its adsorption capacity was low (0.0–7.5 ng g⁻¹). In general, for all biochar treatments, shorter-chain PFASs were more resistant to removal than longer-chain PFASs. In addition, C₄, C₆ and C₈ PFSAs showed 10–30%, 10–50% and 20–30% higher average removal efficiency, respectively, than PFCAs with corresponding perfluoroalkyl chain length. In conclusion, biochar is a promising filter medium for removal of PFASs in OWTSs, especially for PFASs with a perfluorocarbon chain longer than C₆.
اظهر المزيد [+] اقل [-]Reflection of concentrations of polybrominated diphenyl ethers in health risk assessment: A case study in sediments from the metropolitan river, North China النص الكامل
2019
Wang, Guoguang | Liu, Yu | Tao, Wei | Zhao, Xinda | Li, Xianguo
As a developed city in North China, Tsingtao is believed to be suffering from the pollution of polybrominated diphenyl ethers (PBDEs) due to the rapid industrialization and urbanization in recent years. In this work, 8 PBDE congeners were detected in sediments from Moshui River, Tsingtao. BDE-209 and sum of 7 low brominated PBDE congeners (∑₇PBDEs, excluding BDE-209) ranged from 10.2 × 10⁻³ to 237 × 10⁻³ mg kg⁻¹ and from 1.62 × 10⁻³ to 23.1 × 10⁻³ mg kg⁻¹ d.w., respectively. PBDE concentrations decreased in the order of midstream > downstream > upstream, attributing to the discrepancies in anthropogenic activities among these areas. Principal component analysis coupled with multiple linear regression (PCA-MLR) revealed that 24.4% of PBDEs were derived from surface runoff of contaminated soils, 58.2% from direct discharge of local sources and 17.4% from atmospheric deposition. The probabilistic health risk assessment of PBDEs was performed by using Monte Carlo simulation. The carcinogenic and non-carcinogenic risks based on total PBDEs were low for children and teens, whilst severe for adults. However, based on bioaccessible PBDEs (in vitro gastrointestinal model), there was no obvious health risk for the three age groups. To the best of our knowledge, the present study was the first attempt to assess the health risk by using bioaccessible PBDEs in sediments.
اظهر المزيد [+] اقل [-]